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ABSTRACT
NAND flash-based Solid State Drives (SSDs) provide a promising op-
portunity to enable the unified memory-storage hierarchy (UMH).
The UMH renders a single memory address space for heteroge-
neous memories. Thus, the CPUs can directly access structured
data in SSDs and eliminate bulk data copy/swap between the mem-
ory and storage devices. However, applying traditional indexing
structures directly on SSDs may lead to poor performance. Particu-
larly, the popular hash indexing generates highly randomized write
traffic, incurring significant garbage collection overhead in SSDs.
To address this problem, we propose a novel SSD-friendly hash
indexing scheme called Tiered Hashing. It employs a multi-layer
structure and opportunistic data movement (ODM) to construct
skewed writes. Hence, the SSD can transform the writes into multi-
streamed writes, where hot and cold data are separated to reduce
GC overhead. Experimental results show Tiered Hashing reduces
the average write latency and GC overhead by up to 94.98% and
90.71% compared to state-of-the-art hash indexings, without sacri-
ficing read performance.
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1 INTRODUCTION
Many modern applications expect in-memory databases to simulta-
neously deliver DRAM-like low access latency and large storage
capacity. On the one hand, hash tables are becoming the most
privileged indexing structure because they perform point queries,
including lookups and insertions, at constant time complexity (O(1))
regardless of the inserted data amount compared to a tree-like in-
dexing structure. For example, mainstream in-memory databases,
such as Redis [4] and Memcached [26] employ hash indexing for
fast data access. On the other hand, due to the growing conflict
between the large working data sets and the high cost to scale main
memory, embracing a unified memory hierarchy (UMH) to extend
DRAM with more cost-effective high-end SSDs [5, 9, 19, 24, 39]
is becoming a promising and practical method. UMH provides in-
memory applications with extra benefits, such as extended memory
capacity and persistent data storage, with only a few or no code
changes.
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However, simply deploying hash indexing under UMH ignores
the distinct features of underlying SSDs, thus incurring significant
performance degradation. Themain reason is that the access pattern
of hash indexing is highly randomized, which is unfavorable with
Nand flash SSDs. Because NAND flash is only page-addressable
and because of its distinct erase-before-write feature, random write
traffic from hash indexing can overburden the garbage collection
(GC) in SSDs1. In addition, given the above limitation of Nand
flash, UMH relies on either host or device memory to enable byte-
addressability for SSDs. However, data written cannot be efficiently
cached and should persist to NAND flash immediately. This further
exacerbates GC overhead and reduces the lifetime of SSDs.

One of the most promising methods to improve write efficiency
and reduce the GC overhead of SSDs is the multi-stream technique.
It stores pages with different updating frequencies into separate
logging areas. Hence, data in the same logging would invalidate
simultaneously, then GC for frequently updated pages will not
touch infrequently updated pages and vice versa. Nonetheless, hash
indexing does not show such skewed writes since a given key
is randomly mapped to the hash table by a set of different hash
functions. Keys with varying update frequencies are highly likely
to collocate to the same bucket. Hence, none of the existing hash
indexings can leverage multi-stream technology to improve write
efficiency.

This paper aims to develop an efficient hash indexing that renders
skewed write traffic that is more GC-friendly without sacrificing
the point query performance. However, there are several critical
challenges. First, skewed write does not come as a free lunch. A
naive solution is to borrow the hierarchical data movement used
by many tree-based indexings to generate naturally skewed writes.
However, we find that the computation and storage overhead of
corresponding data movement overshadows the benefits it brings.
Second, flushing and persisting data under an SSD-based UMH
introduce significantly more latency than other persistent mem-
ories; however, existing hash indexings issue excessive memory
writes that hamper performance [26]. On the one side, many hash
indexing applies key-value relocation to solve hash collisions, and
each relocation would accomplish multiple flush operations. On the
other side, persistent memory-optimized hash indexings employ
write-ahead logs (WALs) and flush crucial write to prevent sys-
tem crashes and ensure data durability, thus significantly reducing
performance.

We propose Tiered Hashing to overcome the high GC overhead
raised by traditional hash indexing against SSD-extended main
memory under UMH. First, we employ a hierarchical structure and
provide the range of each layer to SSDs. By doing so, different
stream IDs can be tagged to each layer dedicatedly. Second, we
invent an opportunistic data movement (ODM) strategy based on
the hierarchical layout to build skewed writes by moving data from
upper to lower layer beforehand, enabling the hash indexing to
leverage the multi-stream feature of modern SSDs. Third, we adopt
maximum one flush policy and in-cacheline crash consistency to
merge multiple flushes into one, which solves the dilemma that the
ODM introduced data movement could overshadow the benefits it
1GC relocates valid flash pages before erasing a whole flash block. The overhead of
GC primarily depends on the number of valid flash pages it needs to migrate. Random
workloads may spread more valid pages across blocks, thus incurring higher overhead.
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Figure 1: Write-through and Write-back under UMH.

brings. Finally, we apply shadow reading to optimize point queries
as moving data to the lower layer increases the average length
of the read path. We build a mathematical model in Section 3.7
to prove that Tiered Hashing can generate highly skewed writes.
Our experimental results show that compared to state-of-the-art
hash indexings, Tiered Hashing reduces the average insert/update
latencies by up to 89.12%/94.98% and reduces the GC overhead by
up to 87.21%/90.71% during insertions/updations.

The rest of this paper is organized as follows. Section 2 describes
the background and motivation. Section 3 presents the design. Sec-
tion 4 evaluates the performance and Section 5 concludes.

2 BACKGROUND AND MOTIVATION
This section discusses the background and motivates our work.

2.1 Unified Memory-Storage Hierarchy
The traditional memory hierarchy treats SSDs as secondary storage.
Application requests must go through multiple hardware/software
layers to copy the SSD data into the main memory, resulting in
tremendous software overhead. As the performance of high-end
SSDs increases, the corresponding software latency constitutes a
significant portion of the entire delay. Thus, researchers employ the
Unified Memory Hierarchy (UMH) to solve this problem, rendering
a memory-like access mechanism for SSDs.

There are several different technologies to enable UMH. First,
the software-based UMH mainly adopts the memory-mapped I/O
interface (e.g., mmap), which in turn leverages the virtual memory
in modern operating systems (OSes) [17, 30]. The mmap interface
enables any block devices to be byte-addressable by mapping an
application’s virtual memory directly to a device file without any re-
quirement of hardware support. The access to the memory-mapped
virtual memory regions results in page faults. The OSes then trans-
parently load the corresponding page from SSDs to DRAM. Since
no hardware change is required, this method has been increas-
ingly deployed in recent years. For example, many widely deployed
in-memory databases, such as MongoDB [3], LMDB[1] use it to
extend the DRAM capacity. However, page fault handling still in-
curs considerable performance overhead. Second,hardware-based
UMH equips byte-addressable SSDs [5, 9, 11, 19, 24, 39], CXL-
enabled SSD [16, 20] or adds a coprocessor [2, 24] to access SSDs
directly from the processors, thus further reducing the software
overhead. The former requires an advanced interconnect such as
CXL [16, 20], PCIe [9, 19, 24], NVDIMM [11], or the combination
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(a) Linear Hashing

 

0

200

400

600

800

1000

1200

1400

1600

1800

L
if

et
im

e 
(n

o
. 

o
f 

u
p
d
at

es

p
er

 1
0

5
k
v
 w

ri
te

s)
 

Logical Block Address

(b) Cuckoo Hashing
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(c) Level Hashing
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(d) Tiered Hashing without Opportunistic DataMove
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(e) Tiered Hashing

Figure 2: I/O characteristic of Different Hashing Indexings. The major difference is the distribution of updating frequency
over LBAs, indicated by the y-axis.

of the two [39]. The latter changes the CPU [24] or GPU [2] to sup-
port an SSD protocol, such as NVMe. Hardware-assisted page swap
can then cache popular data in DRAM to improve performance
further [5, 22, 24, 39]. Both software and hardware-based UMH
significantly extend memory capacity and enable data persistency
like non-volatile memory (NVM) with more cost-effective SSDs.

Note that our proposed Tiered Hashing is compatible with both
UMH solutions, and we assume hardware-based UMH in this pa-
per. Unlike non-volatile memory (NVM), we further distinguish
how to write data to SSDs and study their impact on performance
and crash consistency. As shown in Figure 1, all UMH design re-
quires either host or on-disk memory to hide the distinct feature of
NAND flash. Different from NVM, we define two write schemes for
SSDs. First, the write-through scheme allows the critical writes, e.g.,
checkpointing and snapshot writes, to bypass the DRAM cache. A
memory fence instruction can then follow to prevent write reorder-
ing. Second, the write-back scheme allows other regular writes to
leverage the CPU and DRAM cache to respond faster. The mem-
ory controller will write the NAND only when it evicts the dirty
cache. Although the write-through and write-back schemes vary,
there is no difference between the two from the NVM’s perspective.
However, while deployed under UMH, SSDs need to distinguish
the critical and regular writes to improve performance, and these
two writes schemes can be supported under either UMH. We will
elaborate on how to utilize this feature in Section 3.3.

2.2 Multi-Stream SSDs
Multi-stream SSDs allow application and system software to assign
a stream ID to the data with a similar lifetime during writing [38].
They then place the data with the corresponding stream ID into one

flash block to improve the GC efficiency because data that belong to
the same block are likely to be invalidated simultaneously. Rather
than assign a stream ID in each request, Zoned Namespace (ZNS)
SSDs divide logical-block addresses (LBAs) into multiple zones and
save data on different zones to different erasing blocks [10, 18].
Multi-stream SSDs and ZNS SSDs share the same basic concept,
allowing applications to advise the expected data lifetime to the
device driver. The Multi-stream SSDs do not require application
changes because they still offer a block I/O interface. However, ZNS
SSDs mandate applications to change their method of utilizing the
LBAs. This paper borrows the design of two. We submit a range
of LBA to the SSD to distinguish the data lifetime and assume the
underlying SSD equipt a flash translation layer (FTL) to provide a
standard block I/O interface.

Other than the interface to advise data lifetime, another impor-
tant aspect is how to identify and categorize the data’s updating
frequency. To achieve this, researchers develop various technologies
to identify data with different lifetime [37] or redesign the software
to write separately [31]. However, multi-stream SSDs work more
efficiently only when the application’s writes are notably skewed.
For example, in RocksDB [21] which employs a tree-based index-
ing, different layers in the log-structured merge tree (LSM) have
distinct updating frequencies naturally. Researchers thus seek ways
to manually change the applications to specify a stream ID in each
writes. Also, automatic stream management, such as FStream [31],
AutoStream [37], and PCStream [21], makes stream allocation deci-
sions transparently for the applications.

Note that both manual and automatic stream management re-
quires the data lifetime to be naturally skewed [21, 23]. However,
this requirement is not valid for many in-memory applications.
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First, in-memory applications usually perform more random re-
quests, especially hash indexing. Second, the number of streams
in commercial SSDs is typically limited to only 4 to 16 [21, 36–38],
which restricts the flexibility of memory allocation for in-memory
applications further.

2.3 Hash Indexing
In recent years, researchers have proposed several newhash schemes,
such as CCEH [27], Level Hashing [41] and Path Hashing [40], for
persistent memories to guarantee the crash consistency based on
conventional hash indexings, such as Cuckoo Hashing [29]. How-
ever, they focus more on NVMs including ReRAM [6], PCM [33],
SST-MRAM [7] and 3D XPoint [28], which endure intensive ran-
dom and in-place accesses better than flash. It is still essential to
study how to develop SSD-friendly hash indexing while underlying
persistent memory is NAND flash. Several works [32, 35] employ
Linear Hashing [25] to maintain many small logs and perform
more sequential writes. However, they may sacrifice the read per-
formance and also cannot benefit from multi-stream technologies.
In the following, we analyze different hash schemes to motivate
our work.

One critical issue of hash indexing is handling hash collisions
when multiple keys map to the same bucket. To reduce collisions,
both Cuckoo Hashing [29] and Level Hashing [41] allocate multiple
slots in one bucket and employ two or more hash functions to map
a given key to multiple buckets. If one of the hash functions cannot
locate a bucket with an empty slot, they will try another one. If
none of the functions can identify such an open slot, they will
attempt to move an existing key-value pair in the corresponding
buckets using alternative hash functions. The difference is that Level
Hashing only allows a maximum of one movement per insertion,
while Cuckoo Hashing repeats data movement until it succeeds or
reaches a threshold.

If all the above strategies fail, they will resize by allocating a
larger hash table and moving all data to the new one. For example,
Cuckoo Hashing [29] reallocates a new table that is two times
larger than the old one and copies all existing key-value pairs.
To reduce the resizing latency, Level Hashing [41] maintains two
layers of hash tables, where the top layer is two times larger than the
bottom layer. Level Hashing resizes the bottom layer to a four times
larger "new" top layer so that the total table size doubles but only
needs to move 1/3 of the data. Although in two consecutive hash
resizing, Level Hashing still has to move all the data as described
in [27], they do reduce the long-tail latency by performing two
relatively small resizes. Clevel Hashing [12] offloads the resizing to
background threads. CCEH [27] revises Extendible Hashing [14]
to support crash consistency. It only resizes the particular bucket
that has collision. However, it also introduces many small memory
reallocations, making it impractical to apply on multi-stream SSDs
under UMH.

2.4 Motivation
Lack of Write Skewness: To study the lifetime distribution in
hash indexings, we insert 680 million key-value pairs (20GB data)
to illustrate the lack of skewness of existing hash indexing. By
configuring the size of different hash tables, we make each of them
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Figure 3: Tripple Flushes per KV Movement

resize twice in our comparison experiment. Figure 2a to 2b illustrate
the access randomness of three hashing schemes by showing their
number of writes (lifetime) on different LBAs.

Existing hash indexings show little skewness. The Level Hashing
initializes 225 buckets on the top level and 224 buckets on the bottom
level; each bucket contains four slots. Thus, it resizes two times in
the experiment. We can see three parts in Figure 2c. The right part
(P0) is its lifetime before resizing, the middle (P1) is the lifetime
between two resizing, and the left (P1) is the lifetime after the
second resizing. Though Level Hashing employs a hierarchical
structure, the lifetime’s hierarchy is not obvious in each part. The
difference in lifetime distribution over LBAs is rather trivial; thus,
it can hardly benefit from Multi-stream SSDs. Also, as shown in
Figure 2a and 2b, the lifetime distribution of Cuckoo and Linear
Hashing over LBAs is even less distinguishable than Level Hashing
because they do not employ a hierarchical structure. The random
writes to SSDs will cause significantly higher write amplification.
Hence, it is crucial to develop a more SSD-friendly hash indexing.

Hash Movement incurs extra flushing overhead: Enabling
key-value pairs’ movement between multiple buckets is a primary
way to help reduce the necessary rehashing. However, each move
operation results in at least two consecutive flush operations in
the critical execution path - first flush the destination bucket, then
flush the source bucket with the new data. Moreover, a write-ahead
log (WAL) is also necessary to guarantee data consistency and
prevent data loss in a sudden crash because the movement involves
multiple updates. Specifically, as shown in Figure 3, a reasonable
strategy is to first write to the WAL to trace the moved key. It then
writes to the destination slot and flushes it to NAND flash. Finally,
it removes the data in the source slot and flushes it to inform SSD
of a deletion. Such a movement strategy results in a considerable
amount of writes and flushes to SSD, which may even overshadow
the benefits brought by other hash optimizations.

3 TIERED HASHING DESIGN
This section describes how Tiered Hashing works and explains why
it can be SSD-friendly.

3.1 Layout of Tiered Hashing
Equivalent to many other contenders, Tiered Hashing employs two
hash functions to mitigate hash collisions.2 Then, Tiered Hashing
employs a hierarchical structure, which provides an opportunity
to differentiate the lifetime of underlying NAND pages in each
layer, such that we can achieve noticeable skewness to leverage

2As two hash functions result in a maximum load factor of around 95%, it does not
make sense to use more than two hash functions [12, 29].
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Figure 5: The Tiered Hashing Layout.

the multi-stream feature. As shown in Figure 5, Tiered Hashing
consists of multiple layers of the hash table and maps each layer
to a fixed region on the SSD. In Tiered Hashing, each layer is 2𝑛
times larger than the layer above (where 𝑛 is an integer). Each layer
consists of multiple buckets located by the two hash functions, and
each bucket contains four slots. Each slot stores a 16-byte key and
a 15-byte value, which is large enough for most key-value pairs
in Facebook’s key-value store [8]. To support larger KV sizes, we
would save the data in a separate log and then index a pointer to
the log item, which is out of the scope of this paper.

Combining of Multi-stream SSDs With Tiered Hashing:
Multi-stream SSDs allow applications to assign a stream ID with
the write command. In our hardware-managed UMH architecture,
the requests to SSDs are a set of memory writes transferred via
PCIe. Tiered Hashing provides the range of each layer to the SSDs.
The SSDs then assign a stream ID to each memory range. The
SSD firmware determines the corresponding stream ID when a
write request arrives based on the range table. Employing specified
hardware can accelerate such searching processes. This design is
feasible because the layers in Tiered Hashing are relatively stable
and limited in number.

Benefits of Tiered Structure: The pyramid-like structure in
Tiered Hashing lets buckets directed by the same hash value in
different layers be affiliated with each other. New KVs are inserted
into an upper bucket first; they can then move to the lower bucket

together when the upper one is full. Such a design opens up free
slots and leaves the LBA range of upper layers updated more fre-
quently. Since each layer is associated with a fixed LBA range, the
disk can then distinguish the update frequency based on LBAs and
leverage the write skewness. As shown in figure 2d, Tiered Hashing
exibits better skewness than existing ones.

3.2 Insertion Scheme of Tiered Hashing
One of the main differences between Tiered Hashing and existing
hash indexings lies in the insertion policy. When a new KV arrives,
the hash indexing will first try to find an empty slot in the bucket
directed by the first hash function from the top layer. If failed,
existing hash indexing will try to search the alternative bucket in
the same layer directed by the second hash function. If both buckets
are full, the hash indexing will randomly pick up a slot, move the
KV inside it to its alternative bucket, and free the slot before the
new KV is inserted. As shown in Figure 4(a), existing hash indexing
picks A for eviction; it first tries to relocate A to the same level.
Such an eviction could trigger an iteration over the whole layer
until a free slot is found or no alternative bucket exists. Since the
top layer has no alternative bucket for A, it will evict A from the
source slot in the top layer to the destination slot in the next layer,
introducing triple flushes. Then, B is inserted after A is migrated
successfully to the second layer and the source slot occupied by
A is freed, thus incurring long-tail latency. In contrast, when both
buckets are full for B, Tiered Hashing will directly try to find a free
slot in the second level by using one more bit of the hash value
and leaving A in the original position. As shown in Figure 4(b),
only one flush is needed to insert B in the second level. Note that
Tiered Hashing will iterate the above lookup procedure until a free
slot is found. Resizing happens when it cannot solve a collision
at existing levels. Such a design also differs from LSM-tree since
inserting new KVs will not evict elders in the upper layer and avoid
table compaction, thus significantly reducing write traffic.

3.3 Opportunistic Data Movement
To further enhance the skewness of hash indexing, Tiered Hashing
performs an opportunistic data movement (ODM) strategy during a
regular insertion. As shown in Figure 4(c), Tiered Hashing searches
an open slot for B from the top layer to the bottom layer until
success. While inserting into a lower layer, the ODM strategy will
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Figure 6: Flags for Tiered Hashing.

simultaneously move down the data (from buckets indexed by
hash(b)) from the upper layers if possible, thus opening up free
slots in upper layers. Such a strategy enables skewedwrites between
layers because moving the data from the upper layer will sink the
data to the lower layer. It works because cold data does not update
frequently, then they sink to lower layers accordingly. In contrast,
hot data won’t sink and remain in the upper layers. Thus, it helps
generate skewed writes between different layers, which will benefit
from Multi-stream SSDs.

MaximumOne Flush Policy:Although our opportunistic data
movement generates Multi-Stream SSD-friendly skewed write be-
tween layers, the crucial problem is that such a policy incurs nu-
merous costly flushing operations. A maximum one flush policy
is used to mitigate extra migration overhead introduced by the
ODM strategy for each updating or insertion without sacrificing
the crash consistency. We find extra data movement incurred by
our proposed data movement can be carried out during the KV in-
sertion operation. The rationale behind this is that the write traffic
incurred by data movement can be cached and wait for the write-
back, thus eliminating the costly flushing illustrated in Figure 3. In
addition, since data movements and queries follow the same single
direction, and no extra data is altered except for the inserted one,
there is always an up-to-date copy for opportunistically moved
data. Therefore, even a WAL log won’t be needed. Moreover, as all
the movement destinations in opportunistic data movement always
colocate with the page that is serving the updating or insertion
request, Tiered Hashing only needs to perform one flush operation
towards the destination page after finishing all the writes.

3.4 Shadow Reading
Since searching starts from the top layer, migrating key-value pairs
during insertion and updating reduces the upper layers’ hit ratio.
Therefore, more layers would be searched before a key is finally
located, thus increasing the average search latency. Tiered Hashing
develops shadow reading that allows the source slot in upper layers
to serve both queries and insertions after an opportunistic data
movement by employing two bitwise flags to enable the access
control for each slot. A source slot can simultaneously serve query
and insertion because Tiered Hashing will have duplicated keys in
both source and destination slots after performing the ODM; thus,
overwriting the source slot does not result in data loss. Specifically,
we mask the source slot as writable and apply shadow reading
rather than removing the data during opportunistic data movement.
As a result, as data ’A’ in red in Figure 4(c) shows, the pending reads
can still access the source slot before another write overrides it. To
achieve this, we leverage the extra free space in the metadata area
to track the writable state for each slot.

Table 1: Truth Table for Shadow Reading

readable flag non-writable flag Description

0 0 Open slot (Initial)
0 1 N/A (Impossible)
1 0 Shadow slot
1 1 Valid slot

Figure 6 shows themetadata structure for slots in Tiered Hashing,
while Table 1 lists the state of two flags regarding three different
states of a slot. Tiered Hashing employs two flags for each slot to
indicate its "readable" and "non-writable" states. Initially, they are
both false, which means this slot is unreadable and writable.

To enable shadow reading without compromising the crash con-
sistency, Tiered Hashing adopts a novel updating scheme while
moving key-value pairs between layers. For the slots in the upper
layers, we mark their "readable" flags as "1" and "non-writable" flags
as "0". Thus, the slots in the upper layers are still readable, and we
do not have to search the lower layers for reading. Meanwhile, as
the "non-writable" flag is 0, the slot would be open for incoming
writes. We will mark the "readable" flag as "0" before writing a new
key-value pair.

Benefits brought by colocating flags and data in the same
cacheline: To further reduce the overhead of flushing for data con-
sistency and logging, we carefully design the placement of flags. If
we can guarantee the order between the write of data and flags, we
can eliminate logs and extra flush operations. Fortunately, while
performingmultiple writes to the same cacheline, the writing orders
to the cacheline is equivalent to the order they reach the persistent
memory [13]. Such an order can be guaranteed with release mem-
ory ordering supported in C++11, or the fence instruction on X64
architecture, both of which incur no runtime overhead. Therefore,
Tiered Hashing substitutes WAL with the flagging mechanism and
places each slot and its metadata in the same cacheline to elim-
inate extra flushes to guarantee consistency while updating the
metadata and slot. This is feasible because, for 15-byte keys and
16-byte values, each cacheline can place two key-value pairs plus a
2-byte metadata area that saves 2-bit readable, 2-bit non-writable,
and 2-bit deletion flags. As a comparison, existing hash indexings,
such as Level Hashing, place the metadata in the header of each
slot, failing to guarantee all flags and their corresponding data are
located in the same cacheline.

3.5 Lazy Updating and Deletion
Since the ODM strategy opens up more empty slots in the above lay-
ers, Tiered Hashing adopts the lazy updating and deletion schemes
to enhance skewed writes. The lazy updating and deletion scheme
encodes the operation in an open slot in the above layers rather
than directly updating the lower layer. Tiered Hashing places the
new value of a key in the above layers. Hence during the read, it
searches the above layer before entering the lower layer to ensure
getting the updated value. Also, Tiered Hashing expresses dele-
tion of a key using either a reserved value, such as zero, or a flag
in the extra metadata area, such as the deletion flags in Figure 6.
Later, during the ODM operation, the corresponding updating and
deletion then sink to the lower layer.
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3.6 In-Cacheline Crash consistency
Based on the above design and analysis, we use multiple strategies
to guarantee crash consistency under different scenarios.

First, when inserting data into an open slot, once we write the
key-value pair, we can alter the readable flag of the slot and persist
both data and flags using one flush tomake its data ready for reading.
This design does not require an extra write-ahead log (WAL) to
guarantee consistency because the write to the flag is atomic.

Second, when writing data to a shadow slot, we set the readable
flag to 0 before writing the new data and reset both the readable
and non-writable flags to 1 afterward. Since all writes are in the
same cacheline, we only protect the order we update the flags and
values and perform one flush until all writes are finished.

Third, when migrating the data, we simply use the above meth-
ods to write to the destination slot. After safely writing to the
destination, we remove the data from the source by changing the
corresponding flags. However, we avoid flushing the source slot
after that. If the system crashes, we will scan the table to search
for duplicated KV pairs. If two layers contain the same KV pair,
the one in the upper layer can be safely removed. Since the path
of data movement is short and the direction is fixed, the recovery
only needs to scan limited buckets and can be made incrementally
by checking all buckets on each layer directed by the same hash
value during regular workloads.

Finally, when updating a key-value pair, we first seek upper
layers to find an open or shadow slot to place the data. If success in
finding an available slot, we use the first or second strategy to insert
the data. Then, we wait until the ODM strategy move down the
updated value. If failed to find an available slot in the upper layers,
we then update the corresponding value "in-place". Because we
support 16-byte values, which exceed the 8-byte maximum atomic
updating size, this is the only case we employ a WAL to protect the
"in-place" value override.

3.7 Modeling Skew Factor
Tiered Hashing generates skewed writes between layers by em-
ploying ODM. Here, we model the skew factor to demonstrate its
effectiveness. Note that we use a pure random workload to test
the skewness generated by our design alone. The skew factor in
this paper indicates the ratio of updating frequency in an upper
layer versus the lower layer. For simplicity, we adopt two layers
in Tiered Hashing. We denote the distance between the two layers
as r, which means the size of the lower layer is 2𝑟 times as much
as the upper layer. The insertion process contains the following
three phases. In the first phase, new key-value pairs will initially
hit the upper layer with open slots. When the upper layer is full in
the second phase, the subsequent insertion will hit the lower layer
and trigger opportunistic data movement. Suppose a perfect hash
function randomly maps the keys to the table; the ODM process
will move one over 2𝑟 of key-value pairs from an upper layer’s page
down to the lower layer on average. In the third phase, the upper
layer will open up free slots again, and the subsequent insertion
will hit the upper layer until it is full for another time. Then, the
subsequent insertion will trigger phase two once more. Assume
that a page has N key-value pairs, and there are X writes to the
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Figure 7: The skew factor, which equals to the proportion
of writes to layer 0 and layer 1 as the two layers’ distance
increases from one to six.

lower layer. According to the description above, the skew factor F
is:

𝐹 = lim
𝑋→∞

𝑁 + 𝑁
2𝑟 · 𝑃 · 𝑋
𝑋

≈ 𝑁 · 𝑃
2𝑟

The factor P denotes the average percentage of key-value pairs
that Tiered Hashing moves from an upper layer’s bucket when it
performs the ODM strategy. It differs according to the number of
key-value pairs in source and destination buckets in two layers. As
the number of key-value pairs inserted increases, the impact of the
first phase decreases, and the impact of the second and the third
phase becomes dominant.

Figure 7 shows the skewness of writes between two layers when
the factor r increases from one to six. We set the top layer (L0) to
have 1024 buckets and the bottom layer (L1) to have 1024·2𝑟 buckets,
inserting key-value pairs into the hash table until resizing is needed.
The number of key-value pairs inserted ranges from 11k to 185k.
Experimental results show that the skew factor decreases from
19.96 to 0.85 as r increases from one to six. Note that when r is six,
the skew factor is less than one, which means it is reversed, and the
write frequency in L1 is higher than that of L0. Our mathematical
model matches well with the experimental results when P is 30.7%.

Note that the above mathematical analysis assumes a simple ran-
dom KV workload. When the KV insertions are skewed like many
real-world workloads, such as the YCSB [15], our ODM can generate
even higher skewed writes because the keys that are updated less
frequently will gradually sink to the bottom layers. However, other
hash indexings will mix keys with different updating frequencies.

3.8 Resizing Scheme
Tiered Hashing adopts a cost-efficient resizing scheme by adding a
new bottom layer two times larger than the layer above.We lock the
write permission of the top layer. While inserting into the bottom
layer, we then apply the ODM scheme to move down the data from
the upper layers. We can safely remove the top layer until we move
all the data within the top layer down.

4 EVALUATION
In this section, we evaluate our design and analyze the results.
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4.1 Evaluation Methodology
Our evaluation uses an in-house multi-stream SSD emulator similar
to FlatFlash [5]. The emulator divides the host memory into three
regions: the first region represents a regular host DRAM; the second
region models the SSD-Cache; the third region simulates the NAND
flash. To track the pages cached in the SSD-Cache and to inject
memory access latencies of the SSD regions, the emulator uses
mprotect to control the protection bit in the page table.

We experiment on a Linux Server (Linux 5.4.0-53-generic) with
40-core Intel Xeon E7-4820 2.0GHz CPUs (each core has 32KB L1
instruction cache, 32KB L1 data cache, 256KB L2 cache, and 15MB
last level cache). The SSD configuration is described in Table 2,
which is comparable to Tiny-Tail Flash [34] and FlatFlash [5]. We
configure the SSD capacity to be 16GB and set the size of the SSD-
Cache to be 0.1% of the SSD capacity.

To gain deep insights, we compare different mainstream index-
ings with various configurations as baselines. The Cuckoo [29] and
Linear Hashing are configured to use one stream. To understand
whether Level Hashing [41] can benefit from Multi-Stream SSD,
we configure default Level Hashing to use one stream (denoted
as Level). In Level-stream, we bind the top and bottom levels to
different streams (denoted as LevelS). To prove that our solution
has similar GC overhead with tree-like indexings, we also configure
LevelDB — an LSM-based KV engine — as one of the baselines.
The LevelDB is tailored for UMH to persist its data via memory
interface. Finally, Tiered Hashing attaches each level to a separate
stream, denoted as X-Tiers, where X is the number of levels. Note
that Tiered Hashing employs the lazy updating and deletion scheme
and multi-stream feature by default.

We first use synthetic random workloads in all experiments until
Section 4.5 to demonstrate the effectiveness of Tiered Hashing
and analyze why it is SSD-friendly. We then employ YCSB [15]
with Zipfian key distribution to show how skewed key accesses in
real-world workloads would perform under different indexings.

Table 2: SSD Parameters

# of Blocks 16384 Page Size 4KB
# of Pages per Block 256 SSD Cache Size 16MB
Page Read 60us Page Write 800us
Block Erase 3ms Cacheline Read 4.8us
Cacheline Write 0.6us Over-provision 20%

4.2 Write Performance Analysis
In this experiment, we stress the SSD to evaluate the write per-
formance of different hash indexings. We collect the latency of
hash tables and SSD GC efficiency under different schemes during
insertions and updations. The amount of data inserted is 20GB,
which is enough to trigger GC. Given that there is no extra design
for resizing scheme of Tiered Hashing, we configure the capacity
of each hash data structure the same to accommodate total data
inserted just enough (95%), thus avoiding resizing and preventing
its complex interaction with internal GC. Since the performance
changes with the fullness of indexings (i.e., the number of inserted

KVs), we collect the statistics per 100k insertions. The results are
shown in Figure 8.

4.2.1 Overall Write Performance. Figure 8a shows the insert la-
tencies of different indexings. We can find that the latencies of
Cuckoo and Linear Hashing quickly reach a high level of 94𝑚𝑠 .
In the end, the latency of Cuckoo Hashing climbs to about 250𝑚𝑠

because it works more aggressively to move key-value pairs with
different hash functions as the number of hash collisions rises. Lin-
ear Hashing’s latency reaches 93𝑚𝑠 because of its strategy of linear
probing. Level Hashing does not show a noticeable difference no
matter it applies multi-stream technology or not. Level Hashing’s
insert latency is 3.1𝑚𝑠 on average at the beginning, then raises to
22.9𝑚𝑠 on average. Tiered Hashing’s insert latencies remain at the
lowest level (about 1.3𝑚𝑠) because its opportunistic data movement
strategy generates skewed writes, which benefit from Multi-stream
SSDs. We can see a slight improvement when comparing Tiered
Hashing to LevelDB, with LevelDB showing 5.14 times higher la-
tency than that of Tiered Hashing. Such a consequence is mainly
due to the costly compaction of LevelDB. As the number of inserted
keys increases, both the latency and fluctuation of latency for Lev-
elDB expand as well, while the latency of Tiered Hashing stays low
constantly.

Figure 8d shows the update latencies of different hash indexings,
which is relatively steady compared to the insert latencies. Both
Cuckoo Hashing and Linear Hashing show a latency of 127𝑚𝑠

on average. Level Hashing without multi-stream needs 114𝑚𝑠 to
serve update operations, and Level Hashing with multi-stream
needs 119𝑚𝑠 . Tiered Hashing’s average update latency is the lowest
(5.6𝑚𝑠) due to its opportunistic data movement and lazy updating
strategies. We can also find the update latency of Tiered Hashing
is slightly lower than that of LevelDB, with LevelDB showing 2.23
times higher latency than that of Tiered Hashing.

4.2.2 Internal SSD Write Amplification. To understand why Tiered
Hashing outperforms others in insertion and updating workloads,
we collect the internal write amplification factor (WAF) for different
indexing designs. We denote the ratio of total flash writes times de-
vided by the number of writes received by SSD as the internal WAF,
which mainly comes from SSD GC overhead. In other words, the
internal WAF reflects how SSD-friendly the write traffic generated
by different indexings is.

Figure 8b shows the internalWAF for insertionworkloads. Cuckoo
Hashing and Linear Hashing’s WAFs quickly rise to 26.7, proving
that the SSD performance decreases significantly under random
hash table writes. Since Level Hashing employs a two-layer struc-
ture, Level Hashing’s WAF initially stays at 2.05 for a period; then,
it rises to 18.6 because the SSD begins to perform active garbage
collection heavily when it is about full. Surprisingly, with the aid
of the multi-stream feature, LevelS shows slightly higher internal
WAF than Level when more keys are inserted. Such a result shows
that the combination of the multi-stream feature and indexings
without enough skewness is negatively optimized. Tiered Hash-
ing’s WAF remains at about 1.14 throughout the experiment, which
is similar to the 1.12 of LevelDB. Figure 8e shows the internal WAF
during updating. Tiered Hashing’s WAF is 2.63 on average, which
is slightly larger than the 1.25 of LevelDB, while other hash index-
ings’ internal WAFs are about 28.7 on average. The above statistics
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(e) Internal WAF for Updating.
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Figure 8: Write Performance Analysis

prove that Tiered Hashing achieves GC efficiency similar to tree
structures. As shown in Figure 2e, Tiered Hashing with ODM does
the best in reducing WAF and improving GC efficiency because it
generates a highly skewed write distribution.

4.2.3 External SSD Write Amplification. To study the effect of com-
bining multi-stream with our Tiered Hashing, we also define exter-
nal WAF as the ratio of total write times to the flash to the number
of user writes. Such an externalWAF reflects the write amplification
of indexing schemes and the SSD GC. The pattern of external WAF
is similar to internal WAF except for the numerical gap. The Cuckoo
and Linear hashing generate significant write amplification than
the others. We find that Tiered Hashing’s performance is slightly
better than LevelDB’s regarding external WAF, which may be due
to the costly compaction of LevelDB. In short, both internal and
external WAF prove that Tired Hashing has tree-like GC efficiency.

4.2.4 Sensitivity Analysis of Multiple Layers. To demonstrate the
effect of multi-tiers of Tiered Hashing, we also evaluate Tiered
Hashing with two, three, and four tiers of hash tables. Figure 9
show the results of different experiments. During insertions, 3-
Tiers and 4-Tiers Tiered Hashing exhibit about 43.04% and 129.64%
higher latencies than 2-Tiers. During updating, they exhibit about
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Figure 9: Impact of Settings

12.55% and 18.34% lower latencies. We show the impact on search
performance in the following subsection.

4.3 Search Performance
In this experiment, we evaluate the search performance of different
indexings. We start from an empty table and insert a different
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Table 3: Comparison of Average External Write Amplification

Avg EXWAF Cuckoo Linear Level LevelS 2-Tiers 2-NoMOF LevelDB
Insert 105.05 104.14 13.21 14.14 1.68 4.58 3.31
Update 142.58 142.58 127.87 134.22 7.31 8.54 4.87
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Figure 10: Search Performance Analysis.

Table 4: Effectiveness of Shadow Reading

With SR(us) Without SR(us)
avg 188.5 208.4
max 361.8 361.8

Table 5: Comparison of Read Amplification

Cuckoo Linear Level 2-Tiers LevelDB
RAF 1.86 1.86 2.05 2.28 141.4

number of unique keys. Afterward, we perform random search
operations and collect the average search latency. As shown in
Figure 10a, Cuckoo and Linear Hashing respond much faster than
other schemes because they both use a one-level table structure.
As both Tiered Hashing and Level Hashing employ hierarchical
structures, we limit the number of layers in Tiered Hashing to
two, three, and four. When the number of layers is two, Tiered
Hashing’s search latencies are identical to Level Hashing. Also,
Tiered Hashing’s search performance is almost proportional to
the total number of layers. 3-Tiers performs 20.79% worse than
2-Tiers, and 4-Tiers performs 55.00% worse than 2-Tiers. As shown
in Figure 10b, the search latency of LevelDB is much higher than all
hash indexings’ due to the deep path to find a key. Specifically, as
the number of inserted keys increases, the search latency increases
dramatically to more than 458 times of 2-Tiers.

4.4 Effectivenss of Stand-alone Design
4.4.1 Effectiveness of Maximum One Flush Policy. To demonstrate
the effect of the Maximum One Flush policy (MOF) alone, we con-
figure two-tiered Tiered Hashing without corresponding design,
denoted as 2-NoMOF. 2-NoMOF employs ODM without MOF, thus
incurring numerous extra flushes to SSD. Figure 9a compare the
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Figure 11: The Overall YCSB Performance Analysis.

latencies of different configurations during insertion. Results show
that with the increase of inserted keys, all four configurations ex-
hibit higher latencies, while the 2-NoMOF performs worse than
others (222.00% worse than 2-Tiers). As shown in Figure 9b, the
2-NoMOF performs the worst during updating procedure as well
(37.87%worse than 2-Tiers). However, the performance of 2-NoMOF
gradually reaches 2-Tiers when more keys are updated since in-
place updating dominates, which prevents ODM from incurring
many more data movements. In addition, we also compare the ex-
ternal WAF of Tiered Hashing with and without MOF. As shown
in Table 3, the WAF of 2-NoMOF is 2.73 times of 2-Tiers’ during
insertion. To conclude, with MOF policy, write traffic to SSD is
effectively reduced.

4.4.2 Effectiveness of Shadow Reading. To quantify the effective-
ness of shadow reading (SR) alone, we configure Tiered Hashing
with and without shadow reading. As shown in Table 4, shadow
reading improves the average search latency by 10.6%. Since the
depth of layer dominates the tail latency of searching, the maximum
search latency shows no difference.

4.5 YCSB Performance Analysis
In this experiment, we use YCSB [15], a macrobenchmark for key-
value stores, to analyze the performance of different hash indexings
and LevelDB. We use the default configuration of Zipfian distribu-
tion in the workloads and vary the ratios of search/insertion from
90/10 to 10/90. The amount of data for all YCSB benchmarks is 20GB.
The overall YCSB performance is shown in Figure 11. We observe
that Cuckoo and Linear Hashing have 19.16 - 27.16 times higher
latencies than Tiered Hashing in all workloads. Level Hashing has
7.02 - 7.10 times higher latency than Tiered Hashing. LevelDB has
0.37 - 24.03 times higher latency. This is because Cuckoo Hashing
has many eviction operations; Linear Hashing has a long path to
find a free slot to insert. Both of them and Level Hashing can’t
utilize the efficiency of multi-stream technology. Though the four
hash indexings don’t show much difference in search performances,
their insert performances differ significantly.
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Figure 12: Multi Stream Analysis under YCSB.

In the case of LevelDB, its write performance can rival that
of Tiered Hashing because LevelDB has in-memory memtables
which will be persisted in coarse granularity (such as 2 MB). This
characteristic of LSM-based LevelDB makes its write performance
better than the hash-based structure. However, LevelDB’s read
performance can not compete with Tiered Hashing. As shown in
Table 5, the read amplification (RAF, similar to external WAF) of
LevelDB is significantly larger than all hashings, which is more
than 62 times than the RAF of 2-tiers. To conclude, Tiered Hashing
shows the best performance across all workloads.

4.5.1 Effectiveness of Collaboration with Multi-stream. This exper-
iment studies the extent of improvement brought by combining
Tiered Hashing with the multi-stream feature. Figure 12a and Fig-
ure 12b compare the latency and internal WAF of Tiered Hshing
with/without the aid of the multi-stream feature under different
YCSB benchmarks. Compared with 3-Tier 1-Stream, 3-Tier 3-Stream
decreases the averageWAF by 34.38%, 47.49% and 24.14% in YCSB-A,
YCSB-B and YCSB-D. 3-Tier 3-Stream also reduces the average laten-
cies by 30.10%, 29.73% and 22.28% in YCSB-A, YCSB-B and YCSB-D.
By comparing 3-Tier 1-Stream with 3-Tier 3-Stream, we can see
a noticeable drop in WAF and latency if muli-stream is employed.
The collaboration with multi-stream does provide improvements.
Since YCSB has hotspot in key distribution, the collaboration of
Tierd Hashing and multi-stream shows obvious improvement.

5 CONCLUSION
This paper presents the Tiered Hashing, a pyramidal hierarchical
structured hash indexing that employs a opportunistic data move-
ment scheme to generate multi-stream SSD-friendly skewed write
workload to improve the garbage collection efficiency of SSDs. We
then develop maximum one flush policy and shadow reading to mit-
igate the overhead of data movement. Our experiments show that
Tiered Hashing delivers comparable search performance against
other hash indexings, such as Level Hashing, and write efficiency
similar to LSM-tree indexings, such as LevelDB.
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