An Efficient Page-level FTL to Optimize
Address Translation in Flash Memory

You Zhou Fei Wu*

Wuhan National Laboratory for
Optoelectronics, Huazhong
University of Science and
Technology, China

{zhouyou, wufei}@hust.edu.cn

Abstract

Flash-based solid state disks (SSDs) have been very
popular in consumer and enterprise storage markets due to
their high performance, low energy, shock resistance, and
compact sizes. However, the increasing SSD capacity
imposes great pressure on performing efficient logical to
physical address translation in a page-level flash translation
layer (FTL). Existing schemes usually employ a built-in
RAM cache for storing mapping information, called the
mapping cache, to speed up the address translation. Since
only a fraction of the mapping table can be cached due to
limited cache space, a large number of extra operations to
flash memory are required for cache management and
garbage collection, degrading the performance and lifetime
of an SSD. In this paper, we first apply analytical models to
investigate the key factors that incur extra operations. Then,
we propose an efficient page-level FTL, named TPFTL,
which employs two-level LRU lists to organize cached
mapping entries to minimize the extra operations. Inspired
by the models, we further design a workload-adaptive
loading policy combined with an efficient replacement
policy to increase the cache hit ratio and reduce the
writebacks of replaced dirty entries. Finally, we evaluate
TPFTL using extensive trace-driven simulations. Our
evaluation results show that compared to the state-of-the-art
FTLs, TPFTL reduces random writes caused by address

* Corresponding author: wufei@hust.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

EuroSys’15, April 21-24, 2015, Bordeaux, France.

Copyright © 2015 ACM 978-1-4503-3238-5/15/04. .. $15.00.
http://dx.doi.org/10.1145/2741948.2741949

Ping Huang
Department of Electrical and
Computer Engineering, Virginia
Commonwealth University, USA
{phuang, xhe2}@vcu.edu

Xubin He Jian Zhou

Wuhan National Laboratory for
Optoelectronics, Huazhong
University of Science and
Technology, China
cs_xie@hust.edu.cn,
jzhou.research@gmail.com

Changsheng Xie

translation by an average of 62% and improves the response
time by up to 24%.

1. Introduction

NAND flash-based solid state drives (SSDs) [2] have
been increasingly deployed in portable devices, personal
computers as well as enterprise storage systems as persistent
storage devices [12]. Built with semiconductor chips without
any mechanically moving components, SSDs offer superior
performance, low power consumption and shock resistance
in small sizes. Moreover, the SSD market keeps growing due
to the drop of its per-bit cost [29].

However, flash memory exhibits unique features, such
as asymmetric read/write operations, the erase-before-write
feature, and limited endurance. To hide these features and
emulate a standard block device, a flash translation layer
(FTL) [10] is employed to manage flash memory. Since
data in flash memory cannot be updated in place due to the
erase-before-write feature, the FTL simply writes incoming
data to a free page, which is the unit of read and write
operations [31], and invalidates the previously-mapped page.
As a result, address mapping is required to translate a host
logical address to a physical flash address, more narrowly, to
translate a logical page number (LPN) to a physical page
number (PPN), which is called address translation. Each
flash block consists of a number of pages and is the unit of
an erase operation. When the amount of reserved free blocks
falls below a threshold, a garbage collection (GC) process is
performed to reclaim invalidated pages by relocating valid
pages and erasing victim blocks. Note that each block can
only sustain a limited number of erasures, and erasure is
about ten times slower than write, which is much slower than
read [48]. Due to slow writes and GC operations, random
writes degrade the performance and shorten the lifetime of
an SSD, and thus should be reduced in flash memory [33].

To support fast address translation, the FTL leverages
built-in RAM to cache the LPN-to-PPN mapping table in

the mapping cache. With the increasing capacity of SSDs,
the mapping table grows too large to be cached, especially
when the FTL adopts a page-level mapping scheme, which
has been demonstrated to show better performance [14]. For
example, assuming the flash page size is 4KB and each LPN-
to-PPN mapping entry takes 8B, a 1TB SSD would require
2GB RAM to accommodate the mapping table.

Although modern SSDs are having increasing built-in
RAM to accommodate the expanding capacity [41], we
believe the assumption of a relatively small mapping cache
is reasonable and necessary, and it is still beneficial to
reduce the RAM requirement for at least four reasons. First,
only a small proportion of RAM space is dedicated to the
mapping cache while the remaining is used for buffering
user data [49] and storing other FTL metadata, such as
priority queues for garbage collection and wear leveling [7],
multiple request queues managed by a scheduler [52], even
a fingerprint store for deduplication [5]. Moreover, reducing
the RAM requirement for the mapping cache can increase
the efficiency of other FTL functions. Second, large RAM
significantly increases the cost on acquisition and energy
consumption, as well as vulnerability to a power failure or
system crash. Third, some SSDs employ the internal SRAM
of flash controllers to store the mapping table [42]. Since
SRAM is faster but much smaller than DRAM [3], the
cache size would be less than a few megabytes. Finally,
non-volatile Memory (NVM) technologies (e.g.
phase-change memory [40]), which are persistent and fast,
can be alternatives to the built-in DRAM or SRAM [46],
but they are currently small in scale and capacity due to
high cost. Note that in some special cases, such as the
Fusion-IO PCIe SSD [9] and the SSD design in [4], the
FTL utilizes the large host RAM to store mapping tables.

Several demand-based page-level FTLs have been
proposed to reduce the RAM requirement. In those FTLs, a
full mapping table is packed into pages (called translation
pages) in the order of LPNs in flash memory, and only a
small set of active mapping entries are held in the cache
[14, 19, 39]. However, their caching mechanisms are based
on the LRU (Least Recently Used) algorithm, which may
be inefficient when directly adopted in mapping cache
management. A translation page, ranging from 2KB to
8KB, is the access unit of the mapping table in flash
memory, while the access unit of the mapping cache is an
entry, which typically takes 8B. These two different access
units compel cache management to cause substantial
overhead. During the address translation phase, a cache
miss incurs an extra page read to load the requested entry
into the cache, which can happen more frequently if a high
hit ratio cannot be guaranteed. When the cache is full and
dirty entries are replaced, they need to be written back to
flash memory to maintain the consistency of the mapping
table. Thus, a large number of extra translation page writes
are introduced, together with associated GC operations, in

write-dominant workloads. Therefore, extra operations
caused by inefficient caching mechanisms may potentially
lead to severe degradations in both the performance and
lifetime of an SSD.

In this paper, we aim to optimize the address translation
in flash memory from the mapping cache management
perspective. We first apply analytical models to investigate
the key factors that incur extra operations in flash memory
and then design a new demand-based page-level FTL with a
translation page-level caching mechanism, called TPFTL,
to reduce the extra operations caused by address translation
with a small mapping cache. Specifically, our contributions
include the following:

e We develop two models to analyze the overhead of
address translation in a demand-based page-level FTL
and show how address translation influences the
performance and lifetime of an SSD.

e We propose a novel FTL, TPFTL. Considering the
different access units between flash memory and the
mapping cache, TPFTL clusters the cached mapping
entries that belong to the same translation page, using
the limited cache space efficiently.

e We propose a workload-adaptive loading policy to
exploit the spatial locality to improve the cache hit ratio
and an efficient replacement policy to reduce the
replacement cost.

e We evaluate TPFTL with various enterprise workloads.
Results show that TPFTL reduces page reads and writes
caused by address translation by an average of 26.6% and
62%, respectively, and improves system response time by
up to 24%, compared to the state-of-the-art FTLs.

The rest of the paper is organized as follows. Section 2
provides an overview of the background and related work.
Section 3 presents our analytical models, observations and
motivation. Section 4 describes the proposed TPFTL
scheme. We evaluate TPFTL in Section 5 and conclude the
paper in Section 6.

2. Background and Related Work
2.1 Solid State Drives

In this paper, flash memory refers to NAND flash memory
specifically. Flash memory has made significant strides into
the consumer and enterprise storage markets in the form
of SSDs. An SSD mainly consists of three components: a
software layer FTL, an internal RAM, and flash memory.

The FTL splits I/O requests into page accesses and
performs LPN-to-PPN address translation. According to the
granularity of address mapping, FTL schemes can be
classified into three categories: page-level FTLs,
block-level FTLs, and hybrid FTLs [6]. A page-level FTL
maximizes the performance and space usage by
maintaining a fine-grained mapping, in which a logical page

can be mapped to any physical page. However, the
page-level FTL consumes a prohibitively large RAM space
for the whole mapping table. A block-level FTL is a
coarse-grained mapping scheme and requires much less
RAM. As pages can only go to fixed locations within
blocks, the performance of a block-level FTL is very poor
as a result of maintaining such a rigid mapping regularity.
To make a compromise, both log-buffer based hybrid FTLs
[23, 24, 43] and workload-adaptive hybrid FTLs [37, 45]
are proposed, where both the block-level mapping and
page-level mapping are employed to manage flash memory.
Hybrid FTLs have better performance than block-level
FTLs and require less RAM space than page-level FTLs,
but they suffer from performance degradation in random
write intensive workloads due to costly extra operations to
couple the two mapping schemes. Since the page-level FTL
provides the best performance, our work focuses on how to
maintain its high performance under the condition of a
small mapping cache.

The internal RAM serves as both a data buffer and
mapping cache, and flash memory stores both user data and
the mapping table. Since RAM is much faster than flash
memory and supports overwrites, an internal RAM can
improve the performance and lifetime of an SSD. As a data
buffer, the RAM not only accelerates data access speed, but
also improves the write sequentiality and reduces writes in
flash memory, which has been well studied [21, 38, 46, 49].
As a mapping cache, the RAM accelerates address
translation, but its management introduces extra operations
to flash memory in a demand-based page-level FTL.

2.2 Accelerating Address Translation

Gupta et al. [14] proposed the first demand-based page-
level FTL, called DFTL, to avoid the inefficiency of hybrid
FTLs and to reduce the RAM requirement for the page-level
mapping table. Taking temporal locality into consideration,
DFTL adopts a segmented LRU replacement algorithm to
keep recently used mapping entries in the cache. Hence,
DFTL achieves good performance under workloads with
strong temporal locality.

To further exploit spatial locality, CDFTL [39] and
S-FTL [19] are proposed to improve the hit ratio and thus
the performance. A translation page contains mapping
entries whose LPNs are consecutive so that caching a
translation page can effectively serve the sequential
accesses. CDFTL designs a two-level LRU caching
algorithm for the demand-based page-level FTL. The
first-level cache, called CMT, stores a small number of
active mapping entries, while the second-level cache, called
CTP, selectively caches a few active translation pages and
serves as the kick-out buffer for CMT. Replacements of
dirty entries only occur in CTP and dirty entries in CMT
won’t be replaced unless they are also included in CTP.
Hence, cold dirty entries reside in CMT. S-FTL employs an
entire translation page instead of a mapping entry as the

caching object and organizes recently used pages in an LRU
list. To reduce space consumption, S-FTL shrinks the size
of each cached translation page according to the
sequentiality of PPNs of the entries in the page. In addition,
a small cache area is reserved as dirty buffer to postpone the
replacement of sparsely dispersed dirty entries. To ensure a
small and stable consumption of cache space, ZFTL [34]
divides the whole flash into several partitions, called Zones,
and only caches the mapping information of a recently
accessed Zone. However, Zone switches are cumbersome
and incur significant overhead. In addition, ZFTL employs
a two-tier caching mechanism, where the second-tier cache
stores an active translation page and the first-tier cache
reserves a small area to conduct batch evictions.

HAT [16] integrates a solid-state chip, such as PCM
[40], to store the entire mapping table so that it can access
the data and mapping table in parallel. However, it
introduces additional hardware cost and new challenges of
employing an emerging nonvolatile memory technology.
APS and TreeFTL [44] present uniform caching algorithms
for both the mapping cache and data buffer, which adjust
the two partitions adaptively according to the workloads to
maintain stable and good performance. Another work,
Nameless Writes [53], is proposed to remove the FTL
mapping layer and exposes physical flash addresses to a
new designed file system to improve the performance.

Among these designs, our TPFTL is most related to
CDFTL and S-FTL, which improve the efficiency of
mapping cache management in a demand-based page-level
FTL. The major differences are: (1) CDFTL and S-FTL are
efficient only in sequential workloads, while TPFTL is
friendly to various workloads due to its different page-level
caching mechanism, which performs workload-adaptive
prefetching; (2) Besides increasing the cache hit ratio,
TPFTL goes further to reduce the writebacks of replaced
dirty entries.

2.3 Extending an SSD’s Lifetime

Since the write amplification corresponds to the amount
of additional writes beyond user writes, it is a critical factor
that affects the lifetime of SSDs and has received much
attention. A probabilistic model [15] and an analytical
model [51] are proposed to analyze the write amplification
caused by relocations of valid pages during GC operations.
After analyzing the write amplification from file system,
OFTL [29] is proposed to move storage management from
the file system to the FTL to reduce file system writes, and
ReconFS [30] is proposed to reduce namespace metadata
writebacks. Write amplification from various protection
schemes, such as ECC, is modeled and analyzed in [35].
Write amplification of a flash-based cache device is
analyzed and reduced by optimizations at both the cache
and flash management in [50]. More generally, the overall
write amplification is an effective indicator to show the
efficiency of techniques proposed to reduce writes in flash

memory [11, 18, 28]. In this paper, we focus on the write
amplification caused by address translation.

In addition, various FTL designs are proposed to extend
an SSD’s lifetime. CAFTL [5] integrates de-duplication
techniques into the FTL to eliminate duplicate writes.
AFTL [47] exploits content locality between new data and
its old version in flash memory to eliminate redundant
writes. A thorough study on exploiting data compressibility
to improve the lifetime is presented in [26]. Efficient
garbage collection policies are studied to reduce the
relocations of valid pages when reclaiming invalid pages
[22]. Wear leveling techniques [20, 36] ensures that the full
erase cycles of every flash block are exploited so as to avoid
a device failure due to some blocks being worn out earlier.

3. Models, Observations and Motivation

Before moving on to our design, we first analyze the
impact of address translation on both the performance and
lifetime of an SSD which employs a demand-based page-
level FTL. Then we present our observations and motivation.

3.1 Analytical Models

To clearly understand the problem, we have developed
two models based on a demand-based page-level FTL to
perform an in-depth analysis on the overhead of address
translation: a performance model and a write amplification
model. Table 1 gives a list of symbols used in our analysis.

1) Performance Model

The time to serve a page request mainly includes three
parts: address translation, user page access and garbage
collection if needed. A user page access is to either read a
data page in time 7', or write a data page in time T, in
flash memory.

Before accessing a data page in flash memory, an LPN-
to-PPN address translation is performed. With rate H,, the
required mapping entry is present in the mapping cache,
called a cache hit. Since RAM is about three orders of
magnitude faster than flash memory, the time of accessing
RAM can be negligible. Thus address translation can be
done immediately with a cache hit. With rate 1 — H,., the
required mapping entry has to be obtained by reading its
translation page in flash memory in time 7%, and then be
loaded into the cache, called a cache miss. Moreover, if the
cache is full, an entry, called a victim, needs to be evicted to
make room for the required entry. With probability P,q, the
victim is dirty and has to be written back to flash memory,
resulting in a partial overwrite of a translation page in time
Tty 4 T'typ. In conclusion, the average time of an LPN-to-
PPN translation can be derived as Equation 1.

Tor = (1_HT)*[Tfr+Prd*(Tf7>+wa)] (1)

Note that this equation does not include some special
cases, such as S-FTL [19], where the victim is an entire
translation page and its writeback would be in time T'f,,.

Table 1: A list of symbols.

Symbol | Description
A Write amplification in flash memory
I Hit ratio of modified mapping entries of
ger migrated pages during GC in mapping cache
I Hit ratio of LPN-to-PPN address translation
" in mapping cache
Ny, Number of translation page updates caused by

migrating data pages in GC operations

Nyca Number of GC operations for data blocks

Number of GC operations for translation

Noet blocks
N,y Number of data page migrations in GC
m operations
Nyt Number of migrations of translation pages in

GC operations

N, Number of pages in a flash block

Npq Number of user page accesses in the workload

Number of translation page writes during the

New address translation phase
p Probability of replacing a dirty entry in
rd mapping cache
Ry, Ratio of page writes among user page accesses
T Average time of an LPN-to-PPN address
at translation
Tye Time for a block erase in flash memory
T}, Time for a page read in flash memory
Tt Time for a page write in flash memory
T Average time of collecting data blocks per
ged | yser page access
T Average time of collecting translation blocks
get per user page access
Va Mean of valid pages in collected data blocks
— Mean of valid pages in collected translation
Vi
blocks

When running out of free blocks, a GC process is
performed. A GC operation consists of three steps: (1)
choosing a victim block, either a data block or a translation
block; (2) migrating valid pages remaining in the block to
free pages and updating their mapping entries if the victim
block is a data block; (3) erasing the block in time T, and
moving it to the free block list. When the victim block is a
data block, with rate H,., the mapping entry of a migrated
page is present in the cache, called a GC hit. With rate
1 — Hy., the mapping entry has to be updated in flash
memory in time T, + Ty, called a GC miss.

Assume that Ny.q is the number of GC operations
performed to collect data blocks, and V, is the mean of
valid pages in collected data blocks. The number of data
page writes caused by migrating valid data pages is

Nm,d = Ngcd * vd . (2)

The number of translation page writes caused by updating
the mapping entries of migrated data pages is

th:Ngcd*vd*(l_chr)~ (3)

Collecting data blocks includes migrating valid data
pages in time Ny,q * (T’ + T'y), erasing data blocks in
time Ng.q * Ty, and updating translation pages in flash
memory in time Ng; * (Tt + Tf,). Hence, assuming the
number of user page accesses in the workload is Ny, the
average time of collecting data blocks per user page access
can be derived as Equation 4 from Equations 2 and 3.

Nyea * [Va * (2 = Hyer) * (Tr + Trw) + Tt
Npa

chd =

“)

Assume that Ng.; is the number of GC operations to

collect translation blocks, and V; is the mean of valid pages

in collected translation blocks. The number of translation
page writes caused by migrating valid translation pages is

Nmt:Ngct*Vt~ (5)

Collecting translation blocks includes migrating valid
translation pages in time Ny,¢ * (T, + T't,) and erasing
translation blocks in time N * T'f.. Thus the average time
of collecting translation blocks per user page access can be
derived as Equation 6 from Equation 5.

Noet % [Vi x (Tpr + Trw) + The)
N,

pa

(6)

Tgct =

The average gain of free pages from collecting a data
block with V; valid pages is N, — Vy and each page write
consumes a free page. The number of user page writes is
Npq * R, assuming the SSD is in full use, Ng.q4 can be
described as Equation 7.

Npa * Ry,

Noea = -
TN, —

)
According to the derivation of Equation 1 , the number of

translation page writes during the address translation phase
is given by Equation 8.

Niw =1 —H;) % Prg % Npg .)

Since the number of translation page writes, excluding
the writes caused by collecting translation blocks, is N, +
Ngi, Nget can be described as Equation 9, similar to Ngcq.

Ntw + th

Nyet = —
gct Np—Vt

€))

In conclusion, the average time of collecting data blocks
and translation blocks per user page access can be derived

as Equation 10 (from Equations 4 and 7) and 11 (from
Equations 3, 6, 8, and 9), respectively.

Ry * [Vax (2= Hyer) % (Tyr + Truw) + Tyel
Tgcd - —

Np = Vi
_ (10)
Ry % Vg (1 — Hyer
Tyet =[(1 — H,) * Prg + — * d*(i gc)]*
Np =V
1D

Vi (Tyr + Tpuw) + Te
N,V

From Equations 1, 10 and 11, we see that address
translation and GC introduce extra access cost in flash
memory, which is influenced by H,., P.q, Ry, Vg, Vi and
Hg.,. Since we focus on the cost caused by address
translation, R,,, which relies on the specific workload, Vi,
V; and H,., which are decided by the over-provisioning
configuration and the choice of a GC policy, are beyond the
scope of this paper. Then, two conclusions can be drawn.
First, address translation leads to direct and indirect cost,
degrading the performance of an SSD. The direct cost is
incurred by cache misses and replacements of dirty entries
in the mapping cache during the address translation phase,
and the indirect cost is incurred by GC misses and
collecting translation blocks during GC operations. Second,
both the direct and indirect cost are subject to two factors:
H, and P,4. The address translation cost can be reduced by
either increasing the cache hit ratio and/or reducing the
probability of replacing a dirty entry.

2) Write Amplification Model

As discussed in Section 2.3, write amplification is a good
metric to quantify the negative effect of extra writes, which
refer to writes that are beyond user page writes (Np, * Ry).
The writebacks of replaced dirty entries cause translation
page writes to flash memory (Vy,,,), and GC operations incur
both data page writes (IV,,4) and translation page writes
(Ngt + Npup) to flash memory. Assuming the workload is
not read-only (R,, > 0), the write amplification is

Npa * Rw + Ntw + de + th + Nmt

A:
Npo * Ry,

12)

Incorporating Equations 2, 3, 5, 7, 8 and 9, the write
amplification can be derived as Equation 13.

N,
A=14+(1—-H)*« Py ——L ——+
() ! (Np = Vi) * Ry
N, Va (13
14+ (1= Hyep) ¥ —2—] % —2—
N,-V; N,—Vg

From Equations 12 and 13, we see address translation
and GC cause extra writes to flash memory and increase the
write amplification, which is influenced by H,., P4, R,
Va, Vi and Hyc,. Similar to the performance model, R,

Va, Vi and Hg., are beyond the scope of this paper, and

two conclusions can be drawn. First, extra writes caused by
address translation come from two aspects: (1) replacements
of dirty entries in the mapping cache during the address
translation phase; (2) GC misses and migrations of valid
translation pages during GC operations. Second, the number
of extra writes caused by address translation depends on two
factors: H, and P,q4. The write amplification can be reduced
by either increasing the cache hit ratio and/or lowering the
probability of replacing a dirty entry in the cache.

3.2 Observations

1) Distribution of entries in the mapping cache

In a demand-based page-level FTL, each translation
page contains a fixed number of mapping entries.
Therefore, there may be more than one entry that belong to
the same translation page are cached. We have carried out
experiments to study the distribution of cached entries in
DFTL with four enterprise workloads. Since mapping
entries in the mapping table are stored in the order of LPNs,
their LPNs can be obtained by their offsets in the table.
Thus, only the PPNs of mapping entries are stored in flash
memory. In our experiments, a PPN takes 4B and the size of
a flash page is 4KB so that each translation page contains
1024 mapping entries. The cache is set as large as the
mapping table of a block-level FTL plus the GTD size, and
more detailed experiment setup is presented in Section 5.1.

Figure 1(a) shows the average number of entries in each
cached translation page, which refers to a translation page
which has one or more entries in the cache, during the
running phase. We can see an average of no more than 150
entries (no more than 90 entries most of the time) in each
cached translation page are present in the mapping cache.
This result shows only a small fraction (less than 15%) of
entries in a cached translation page are recently used.
Thus, it is not space-efficient to cache an entire translation
page because most of the entries in the page will not be
accessed in the near future. Figure 1(b) shows the
cumulative distribution curves of the number of cached
translation pages in respect to the number of dirty entries
that a page contains under three write-dominant workloads.
The vertical dashed lines represent the average numbers of
cached dirty entries across cached translation pages. We can
see that 53%-71% of cached translation pages have more
than one dirty entry cached, and the average numbers of
dirty entries in each page are above 15. Therefore, a cached
translation page will be updated repeatedly, when the dirty
entries in the page are successively evicted. This drawback
is due to the inefficiency of the replacement policy of
DFTL, which writes back only one dirty entry when
evicting a dirty entry, regardless of the other more than 14
dirty entries, on average, that share the same translation
page with the evicted one. Since most of the dirty entries in
a page remain cached after evicting one, the probability of
replacing a dirty entry is still high on the next eviction.

-
3
=}

Financial 1
— Financial 2
—— MSR-ts
— MSR-src

-
N}
=}

©
o

@
=]

Average Number of Entries
in Each Cached Translation Page

|

05 1 15 2 25
Time (ms) x 10"

o

o

(a) Average number of entries in each cached translation
page.

2 100% . . v
90% -
80% -
70% -
60% -
50% -
40%
30%F
20%
10%
0 . . H :
0 5 10 15 20 25 30 35 40 45 50
Number of Dirty Entries in a Cached Translation Page

— Financial 1

—MSR-ts

——MSR-src |

- - -Fl-avg

- - -ts—avg

- - -src-avg
n

Cumulative Distribution Function

(b) CDFs of number of cached translation pages.

Figure 1: Distribution of entries in the mapping cache.
Numbers were collected by sampling the mapping cache
every 10,000 user page accesses during the entire running
phase, which contains millions of user page accesses.

Logical address (4KB-aligned)

EReE 7w “" PER S LG R e o
9516 17 18 18 2 21 22 23 24 25
Time (ms) x10°

(a) Access Distribution of Financiall.

Number of Cached Translation Pages

Time (ms) x10°

(b) Trends in the mapping cache.

Figure 2: Spatial locality analyses of Financiall trace.

2) Spatial locality in workloads

Spatial locality, which refers to the access pattern in
which when a page is accessed, its logically neighbouring
pages are likely to be accessed soon, is an important feature
of enterprise workloads. We have studied the spatial locality
in several representative enterprise workloads. The results
reveal that most workloads exhibit some degree of spatial
locality. As shown in Figure 2(a), each 4KB-aligned request
corresponds to a dot. Although Financiall is a
random-dominant workload, it is evident that sequential
accesses, denoted by the diagonal lines, are very common.

Sequential accesses have a different impact on the
distribution of cached mapping entries from random
accesses. Figure 2(b) shows how the number of cached
translation pages in DFTL is changing over time in
Financiall workload. The ovals in Figures 2(a) and 2(b)
correspond to the same time period. We see that sequential
accesses make the number of cached translation pages first
decline sharply and then rise back. The decline is because
sequential accesses require consecutive mapping entries,
which concentrate on a few translation pages. When they
are loaded into the cache, sparsely dispersed entries in
many cached translation pages are evicted to make room.
As sequential accesses that have low temporal locality [24]
come to an end, following random accesses load dispersed
entries into the cache, replacing the consecutive entries.
Thus, the number of cached translation pages increases.
During the whole process, a large amount of loadings and
replacements occur and the translation pages requested by
sequential accesses are accessed repeatedly in flash
memory. Similar phenomena are also observed in other
workloads, providing a clue to leverage the sequential
accesses in workloads to improve the cache hit ratio.

3.3 Motivation

Due to the employment of the MLC (Multi-Level Cell)
technology, the price of flash-based SSDs has dropped
dramatically and the capacity has increased significantly.
MLC flash has a longer write time and a weaker endurance
than SLC flash, making write operations more expensive in
MLC flash [13, 17]. However, extra operations, including
random writes, are introduced when demand-based
page-level FTLs leverage a small mapping cache to
accelerate the address translation. Our experiments (the
configuration is shown in Section 5.1) show that the extra
operations lead to an average of 58.4% performance loss
and 42.3% block erasure increase in the four workloads, as
shown in Table 2. Therefore, it is critical to reduce the extra
operations caused by address translation for the sake of
improving both the performance and lifetime of an SSD.

On the other hand, existing FTL schemes suffer from
different problems. DFTL does not exploit the spatial
locality, losing the chance to further improve the cache hit
ratio, and its replacement policy cannot efficiently lower the

Table 2: Deviations of DFTL from the optimal FTL.

Finl Fin2 ts src
Performance | 63.4% | 52.6% | 59.4% | 58.2%
Erasure 459% | 52.6% | 30.4% | 56.2%

probability of replacing a dirty entry. Thus, DFTL performs
poorly in sequential workloads and write-dominant
workloads. CDFTL and S-FTL keep translation pages
cached to exploit the spatial locality, achieving high
performance in sequential workloads. However, their hit
ratio will decrease in random workloads, because it is not
space-efficient to cache an entire page, as observed in
Section 3.2. Furthermore, evicting an entire page increases
the probability of replacing a dirty entry. As a result,
CDFTL and S-FTL perform poorly in random workloads.

These observations motivate us to design a novel
demand-based page-level FTL that is able to perform fast
address translation at the cost of minimal extra operations in
flash memory with a small mapping cache. The key insight
has been proven to be improving the cache hit ratio as well
as reducing the probability of replacing a dirty entry.

4. Design of TPFTL

4.1 Overview

As shown in Figure 3, TPFTL adopts a demand-based
page-level mapping, where flash memory is divided into
two parts: data blocks, storing user data, and translation
blocks, containing the mapping table which consists of
LPN-PPN mapping entries. These entries are packed into
translation pages in an ascending order of LPNs.
Translation pages are also managed by the page-level
mapping, where a virtual translation page number (VTPN)
can be mapped to any physical translation page number
(PTPN). The global translation directory (GTD), which is
small and entirely resident in the mapping cache, maintains
the physical locations (VTPN-PTPNs) of translation pages.
The requested VTPN is the quotient of the requested LPN
and the number of mapping entries each translation page
contains. Given the VTPN, querying the GTD, we can
locate the translation page (PTPN) in flash memory which
stores the requested LPN-PPN mapping entry.

With limited cache space, TPFTL only holds a small set
of popular mapping entries in the cache. Considering that
the access unit of the mapping table in flash memory is a
page, TPFTL clusters the cached entries of each cached
translation page in the form of a translation page node (TP
node). All the TP nodes in the cache are managed in an
LRU list, called the page-level LRU. Each TP node has a
VTPN and maintains an entry-level LRU list, which
consists of its cached entries in the form of entry nodes.
Each entry node records an LPN-PPN entry. Both the
loading unit and replacing unit of TPFTL are a mapping

]
I
={ri1f={rs ={m ={rs =
T
v | q
MRU ‘1:335 XX ‘ ‘8:520] XX ‘ ‘3:106 XX ‘ ‘52436 XX ‘ l} Gg;?::tzgn(sé?rtg;n
I |
: 1:334] xx 3:952| xx 5:435| xix : TVPN | TPPN
I |
i 3:609| x:x 5:56 | xx 1 0 R
v A cluster with ! 1 XX
LRU three entry nodes 5:55 | xx } > o
| g
5:979| x:x :
Mapping Cache i
1
LPN-PPNs IE TVPN-TPPNSEE
LPN PPN LPN [PPN
Data Page Data Page
Trans. Page Trans. Page
[! = -
L T
Data Blocks Translation Blocks
Flash Memory

Figure 3: Architecture of TPFTL. Each page number is
denoted by two-part: flash block number : page offset in
the block (e.g. LPN 1359 is written as 1:335). As PPNs and
PTPNs are not important here, they are represented by ‘x:x’.

entry. In addition, a counter is maintained in the cache to
record the number change of TP nodes, which is necessary
to our loading policy. Since a few bits are enough, this
space cost is negligible.

Employing the two-level LRU lists to organize cached
mapping entries has three advantages. First, the distribution
of cached entries over the entire mapping table is presented,
providing a hint to design an efficient loading policy and
replacement policy. Second, cache space utilization
increases. Although extra TP nodes take up some cache
space, they account for only a small percentage. More than
that, each mapping entry can be stored in a compressed
way. As the mapping entries in the translation pages are
stored in order, the LPN of each mapping entry can be
obtained from the VTPN and the offset of the entry inside
the translation page. Hence, the offset is stored instead of
the LPN for each entry. For example, a complete mapping
entry consists of a 4 bytes LPN and a 4 bytes PPN. While
the offset takes 10 bits of storage space, assuming each
translation page holds 1024 entries, 6 bytes of storage space
are enough for an entry in the mapping cache. Thus, more
mapping entries can be cached, which has been verified by
our experiments. Third, the two-level index can accelerate
the searching speed compared to a one-level index.

4.2 Page-level LRU

As observed in Section 3.2, a TP node usually has more
than one entry node with different hotness. In the page-
level LRU list, the TP node that contains the hottest or most
recently used (MRU) entry node may also contain cold entry
nodes, which should be evicted ahead of the hot one. To
achieve this, we define page-level hotness as the average

hotness of all the entry nodes in a TP node to measure the
hotness of the TP node. The position of each TP node in the
page-level LRU list is decided by its page-level hotness.
When serving a request for an LPN-PPN entry,
supposing no prefetching is performed (prefetching is
discussed in Section 4.3), TPFTL first searches the
page-level LRU list. If the TP node to which the requested
entry belongs is cached, its entry nodes will be checked. If
the entry node that shares the same LPN is found, a cache
hit happens and the requested entry can be directly obtained
in the cache. Otherwise, a cache miss occurs and the
requested entry has to be fetched from flash memory in the
following steps. First, the requested translation page is
located and read out. Then, the requested entry is loaded
into the MRU position of the entry-level LRU list of its TP
node, which will be created first if not existing. During this
process, if the cache is full, a replacement will occur.
TPFTL first selects the coldest (LRU) TP node and then
chooses its LRU entry node as a victim. If the last entry
node of a TP node is evicted, the TP node will be removed
from the cache. Note that the hotness of each entry node is
obscured by the page-level hotness, which results in less
efficiency in exploiting the temporal locality. The cache hit
ratio is slightly improved due to increased cache space
utilization, which has been verified by our experiments.

4.3 Loading Policy

As depicted in Section 3.2, sequential accesses are very
common in workloads. If they are not recognized and
utilized, significant access overhead will be incurred in
flash memory. To alleviate this problem, TPFTL proposes
two prefetching techniques to improve the cache hit ratio.

The first technique is request-level prefetching. When a
request arrives at the FTL, it is split into one or more page
accesses according to its start address and length. For a large
request, several sequential page accesses to flash memory
are generated. Traditional FTLs carry out address translation
on each page access, which may result in multiple cache
misses in one request. Instead, TPFTL performs address
translation on the entire request so that one request causes
one cache miss at most. To be specific, if the first page access
split from a request is not in the mapping cache, TPFTL
loads all the mapping entries required by the request instead
of just the entry of the first page access. Therefore, the length
of request-level prefetching is proportional to the number of
page accesses contained in the original request.

In real workloads, sequential accesses are often
interspersed with random accesses so that small requests
may also be part of sequential accesses [25]. The
request-level prefetching is efficient with large requests, but
is powerless to recognize those small requests. Therefore,
we propose the second technique, selective prefetching. We
base selective prefetching on the important observation in
Section 3.2 that the number of TP nodes decreases when
sequential accesses are happening and increases when they

are over. If the number of TP nodes continues to decrease
by a threshold, TPFTL assumes sequential accesses are
happening and performs selective prefetching when a cache
miss occurs. If the number begins to continuously increase
by the threshold, TPFTL assumes sequential accesses are
over and stops selective prefetching. The number change is
recorded by the counter, which increases by 1 when a new
TP node is loaded into the cache and decreases by 1 when a
cached TP node is evicted from the cache. When the
absolute value of the counter reaches the threshold, the
selective prefetching is deactivated if the counter is positive;
or activated if the counter is negative, and then the counter
is reset to 0. In our experiments, we empirically found that
most sequential accesses in workloads can be well
recognized when we set the threshold as 3. Further, TPFTL
sets the length of selective prefetching as the number of
cached predecessors, which are consecutive to the requested
mapping entry in LPNs and share the same translation page
with the requested one. This length is chosen because the
longer a sequential access stream is, the more likely the
subsequent data is going to be accessed in the near future
[27]. As a whole, selective prefetching with dynamic length
enables TPFTL to be adaptive to various workloads and
achieve a high cache hit ratio most of the time.

An example of the selective prefetching is given in
Figure 4. Initially, suppose the mapping cache is full, and
the counter is equal to -3 so that the selective prefetching is
activated and the counter is reset to 0. It takes seven steps to
complete the address translation of LPN 1:336: (1) LPN
1:336 is not in the cache and its TP node (VIT'PN = 1) has
been cached; (2) Two consecutive predecessors of LPN
1:336, LPN 1:334 and LPN 1:335, are found to be cached
so that the prefetching length is 2; (3) Since the cache is
full, the LRU TP node 3 as well as its entry, LPN 3:27, are
evicted (Counter = —1), leaving two free slots. Then the
prefetching length is reduced to 1 according to the
principles described in Section 4.5. That is, only LPN 1:336
and LPN 1:337 will be loaded; (4) Read out the translation
page (VI'PN = 1) from flash memory, whose physical
location is obtained by consulting the GTD; (5)-(6) Load
the requested entry (LPN 1:336) and the prefetched entry
(LPN 1:337), into TP node 1 in the cache; (7) The PPN of
LPN 1:336 can be obtained in the cache.

4.4 Replacement Policy

Replacement policy plays a critical role in cache
management because its inefficiency could lead to
excessive writes. Although prefetching improves the hit
ratio, it requires multiple victims, increasing the probability
of replacing a dirty entry. To minimize the probability
without sacrificing the hit ratio, TPFTL adopts two
replacement techniques.

The first technique is batch-update replacement. To the
best of our knowledge, batch update was first used in
DFTL, but in a very limited way. In a GC operation,

Mapping Cache Flash Memory

Hottest Coldest :
LPN 1:
> o Trans. Page 1

10 [xx

{1336 | x| :
i 1:336 ‘ XX
1335 xx | i 1:337 | xx
(z){ i 6) 1:338 | xx

1:1023 | xx

Figure 4: An example of selective prefetching. As PPNs are
irrelevant here, they are represented by ‘x:x’.

multiple valid data pages in the victim block may have their
mapping entries present in the same translation page, so
DFTL combines these modifications into a single batch
update. An analog is the batch eviction of ZFTL [34],
which evicts all entries in a small reserved area that share
the same translation page with the victim entry. However,
thanks to the two-level lists, TPFTL can extend the
batch-update technique throughout the whole mapping
cache and on every writeback of a dirty entry. As observed
in Section 3.2, there are more than one dirty entry in most
TP nodes. When a dirty entry node becomes a victim,
TPFTL writes back all the dirty entry nodes of its TP node,
and only the victim is evicted while the others remain in the
mapping cache with clean state. In addition, when a GC
miss occurs and the mapping entry of a migrated data page
needs to be updated in flash memory, TPFTL checks if the
translation page that it belongs to is cached. If cached, all
the cached dirty entries in the page are written back in a
batch and become clean. Therefore, multiple dirty entries
can be updated in each translation page update and the hit
ratio will not decrease. As the number of cached dirty
entries decreases rapidly, batch-update replacement can
significantly lower the probability of replacing a dirty entry
without increasing replacement overhead.

The second technique is clean-first replacement.
Previous work [38] reveals that in the data buffer of an
SSD, choosing a clean page as a victim rather than dirty
pages can reduce the number of writes in flash memory.
Based on this conclusion, TPFTL first selects the LRU TP
node and then chooses its LRU clean entry node as a
victim, when a victim is needed. If no clean entry node is
found, the LRU dirty entry node will be the victim. As
clean entries are more likely to be replaced, the probability
of replacing a dirty entry is further reduced.

An example of the replacement policy is given in Figure
5. It includes four steps: (1) suppose the mapping cache is
full, and three mapping entries, LPN 0:1000, LPN 0:1001
and LPN 0:1002, are going to be loaded into the cache; (2)
the LRU TP node is VTPN 5, where evictions occur. Both
the LRU clean entries (LPN 5:979 and LPN 5:435) and the
LRU dirty entry (LPN 5:55) are chosen to be victims; (3)

all the dirty entries in VIPN 5 (LPN 5:55, LPN 5:56 and
LPN 5:436) are updated to flash memory in a batch; (4) the
requested entries are loaded into the cache.

Flash Memory

Mapping Cache Trans. Page 0

Hottest Coldest :
T 2
,:9(TP O):?':9(TP 5):9 w 0:1000 | xx
i 0:1001 XX
;-1 0:1000 x:x ic| [[5:436 | xx [d] 011002_ XX
\ 0:999 | xix \c\ \ 5:435 \ XX \c\ -
H i — Trans. Page 5 ---
@} [0998 | xx [c] é) [556 |xx]d [O®—T*
r 0:1001] x:x |c| [555 [xx \d\ 555 | xx
i L | 5:56 \ XX
-10:1002| xx |c| [5:979 | xx ‘c‘
5:436‘ XX

Figure 5: An example of the replacement policy. Each entry
contains three fields: an LPN, a PPN and a dirty flag (‘d’
denotes that the entry is dirty while ‘c’ is clean). As PPNs
are irrelevant here, they are represented by ‘x:x’.

4.5 Integration of Prefetching with Replacement

Since the prefetching compels multiple mapping entries
to be loaded or replaced, more than one translation page
may be read or updated in the address translation of a page
request. Thus, the serving time of a page request becomes
unpredictable and the overhead may increase. To avoid
these drawbacks, TPFTL limits the prefetching length by
two rules. First, the prefetching should be limited in one
translation page. If the prefetching length is larger than the
number of entries that locates between the requested entry
and the last entry in the translation page, it should be
reduced. This prefetching with page boundary is similar to
the limitation of CPU hardware prefetching [8], without
which a page fault may occur. Second, the replacement
should happen only in one cached translation page. If the
prefetching length is larger than the number of entry nodes
in the LRU TP node, the prefetching length should be
reduced. These two rules ensure that no more than one
translation page read or update occurs during each address
translation, leading to a good balance between the loading
and replacement of the mapping cache.

S. Evaluation
5.1 Experiment Setup

1) Trace-driven Simulator

We use the trace-driven simulation to evaluate TPFTL
and compare it with DFTL, S-FTL and the optimal FTL.
Although CDFTL is relevant, it performs worse than S-FTL
in our experiments and thus is not included in the following
evaluation due to space limit. The optimal FTL, employing
a page-level mapping with the entire mapping table cached,
has minimal overhead that any FTL can possibly have. It

10

is used to show what overhead address translation can incur.
We set DFTL as the baseline to show how many performance
and lifetime improvements TPFTL is able to achieve. The
simulator is obtained by adding TPFTL, CDFTL and S-FTL
modules into the Flashsim platform [14]. SSD parameters in
our simulation are taken from [2] and listed in Table 3.
Traces have different sizes of logical address space. In
order not to distort the original characteristics of workloads,
we set the SSD as large as the logical address space of the
trace. The mapping cache is set as large as the mapping
table of a block-level FTL plus the GTD size, which is in
proportion to the SSD capacity. Specifically, the capacities
of the SSD and cache are 512MB and 8.5KB (8KB+512B),
respectively, in Financial workloads, and 16GB and 272KB
(256KB+16KB), respectively, in MSR workloads.

Table 3: SSD parameters in our simulation [2].

Flash Page Size 4KB
Flash Block Size 256KB

Page Read Latency 25us
Page Write Latency 200us
Block Erase Latency 1.5ms

Over-provision Space 15%

2) Workload Traces

In the evaluation, we choose four enterprise traces to
study the efficiency of different FTLs. Financiall and
Financial2 were collected from an OLTP application
running at a large financial institution [1]. As
random-dominant workloads, Financiall is write intensive
and Financial2 is read intensive. MSR-ts and MSR-src are
write-dominant traces, collected on servers at Microsoft
Research Cambridge (MSR) [32]. Different from Financial
traces, their requests have larger sizes and stronger
sequentiality. Table 4 presents the features of the workloads.

Table 4: Specification of workloads.

Parameters Financiall | Financial2 | MSR-ts | MSR-src
Write Ratio 77.9% 18% 82.4% 88.7%
Avg. Req. Size 3.5KB 2.4KB 9KB 7.2KB
Seq. Read 1.5% 0.8% 47.2% 22.6%
Seq. Write 1.8% 0.5% 6% 7.1%
Address Space 512MB 512MB 16GB 16GB

3) Evaluation Metrics

As analyzed in Section 3.1, the probability of replacing a
dirty entry and cache hit ratio are the two key factors that
decide how much address translation impacts the
performance and lifetime of an SSD. Hence, they are first
evaluated to verify the efficiency of TPFTL. Then the
numbers of translation page reads and writes are evaluated
to show how TPFTL reduces the extra operations caused by

address translation. For performance estimation, the
average system response time is a good measure of the
overall performance of the FTL, where the queuing delay,
address translation and GC are all in consideration. For
lifetime estimation, the write amplification and block erase
count are evaluated to present more details.

5.2 [Experiment Results
1) Probability of Replacing a Dirty Entry and Hit Ratios

Figure 6(a) shows the probabilities of replacing a dirty
entry, which refers to the ratio of the number of dirty entry
replacements to the total number of mapping entry
replacements during the entire running phase, of different
FTLs under the four enterprise workloads. The probabilities
of TPFTL are less than 4% in all workloads, most close to
zero probabilities of the optimal FTL. Among these
workloads, only Financial2 is read-dominant, so it has the
lowest probabilities for all FTLs, among which TPFTL still
achieves the lowest probability. As for the other
write-dominant workloads, TPFTL reduces the probabilities
by a range of 58% to 88.4%, compared to DFTL and
S-FTL. This result demonstrates the efficiency of the
replacement policy of TPFTL, which can reduce the
number of cached dirty entries in a batch. Note that the
replacement unit of S-FTL is an entire translation page
instead of an entry, increasing the probability of replacing a
dirty entry. The reason why S-FTL has lower probabilities
than DFTL in Financial workloads is because S-FTL has a
small dirty buffer to delay the replacements of sparsely
dispersed dirty entries, which is efficient for random
workloads. However, the dirty buffer works poorly for
sequential workloads so that S-FTL has higher probabilities
than DFTL in MSR workloads.

Figure 6(b) shows the cache hit ratios, including both
reads and writes, of different FTLs under the four
workloads. For Financial workloads with strong temporal
locality and weak spatial locality, TPFTL improves the hit
ratios by an average of 14.8% and 15.5%, respectively,
compared to DFTL and S-FTL. For MSR workloads with
strong temporal locality and spatial locality, TPFTL
achieves higher hit ratios than DFTL by an average of
16.4% and comparable hit ratios as S-FTL, larger than 95%.
We can conclude that TPFTL succeeds in maintaining a
relatively high hit ratio in various workloads. This owes to
the two-level LRU lists and the workload-adaptive loading
policy of TPFTL. The former makes the cache more
space-efficient and ensures that the temporal locality is
exploited at the entry-level. The latter performs flexible
prefetching to exploit the spatial locality. By contrast,
DFTL only exploits the temporal locality, while S-FTL
radically exploits the spatial locality by caching compressed
translation pages and exploits the temporal locality in the
page level. As a result, S-FTL matches DFTL in Financial
workloads but outperforms DFTL in MSR workloads.

11

2) Numbers of Translation Page Reads and Writes

Figure 6(c) and 6(d) show the normalized numbers of
translation page reads and writes, respectively, during both
the address translation phase and GC operations of different
FTLs under the four workloads. Each value is normalized to
that of DFTL and a value 1 means they are equal. Note that
a higher hit ratio leads to fewer translation page reads
required by cache loadings, and a lower probability of
replacing a dirty entry leads to fewer translation page reads
and writes required by writing back dirty entries. It is no
surprise to see that TPFTL reduces the numbers of
translation page reads by an average of 44.2% and 34.9%
for Financial workloads, and an average of 87.7% and
13.3% for MSR workloads, and reduces the numbers of
translation page writes by an average of 50.5% and 31.4%
for Financial workloads, and an average of 98.8% and
92.6% for MSR workloads, respectively, compared to
DFTL and S-FTL. The reason why the reductions of
translation page reads of TPFTL compared to S-FTL is less
than those of translation page writes is because the
replacement unit of S-FTL is a full page so that it
eliminates the reads required for writing back dirty entries,
which incurs partial page overwrites for TPFTL.

3) System Response Time

Figure 6(e) shows the normalized average system
response times of different FTLs under the four workloads.
Each value is normalized to that of DFTL. Although
TPFTL has reduced both translation page reads and writes
to flash memory, the reductions on response times are not as
dramatic as those on the formers. This is because GC
operations of data blocks account for a considerable
proportion of the response time and TPFTL uses a similar
GC mechanism to those FTL counterparts. Since TPFTL
primarily targets random write intensive applications, it is
not surprising to see TPFTL achieves the greatest
advantages in Financiall workload with 23.5% and 24.1%
performance improvements, respectively, compared to
DFTL and S-FTL. For Financial2 workload, the
improvements are 20.9% and 11.7%, respectively. For MSR
workloads, TPFTL matches S-FTL as well as the optimal
FTL, and outperforms DFTL by an average of 57.6%. It
looks strange that S-FTL has a little higher response time
than DFTL in Financiall workload in spite of a comparable
hit ratio and a lower probability of replacing a dirty entry.
This is related to the GC efficiency. S-FTL delays the
evictions of sparsely dispersed dirty entries so that invalid
pages are scattered among more blocks than DFTL,
resulting in less GC efficiency.

4) Lifetime Analyses

Figures 6(f) and 7(a) show the details of the lifetime
evaluation of different FTLs under the four workloads.
Reductions of write amplifications are not so dramatic

B DFTL EWTPFTL

100%

40%

Probability of Replacing A
Dirty Entry
(2]
<

SFTL ® Optimal

Financiall Financial2 MSR-ts

MSR-src

(a) Probability of replacing a dirty entry

EDFTL WTPFTL

Normalized Number of
Trans. Page Writes

0

SFTL mOptimal

Financiall Financial2 ~MSR-ts

MSR-src

(d) Number of trans. page writes

Cache Hit Ratio

Normalized System

B DFTL ®WTPFTL SFTL ® Optimal B DFTL ETPFTL SFTL ® Optimal

100% ks 1
Cow
90% 87 os
80% E&
70% Z g 06
T @©
60% 2% 04
2y
50% T c
) € 2 02
40% 5 F I
30% = 0 i
Financiall Financial2 MSR-ts MSR-src Financiall Financial2 MSR-ts MSR-src
(b) Cache hit ratio (c) Number of trans. page reads
mDFTL WTPFTL = SFTL mOptimal W DFTL WTPFTL = SFTL M Optimal
1 5.5
@ 3 5
£ =45
= 0.8 Ag A
3 &
@ S 35
c o
g 06 E 3
& < 95
& 04 23
| il ::
0.2 1 - -

Financiall Financial2 MSR-ts MSR-src Financiall Financial2 ~ MSR-ts MSR-src

(e) System response time (f) Write amplification

Figure 6: (a) shows the probabilities of replacing a dirty entry in the mapping cache; (b) shows the hit ratios of the mapping
cache; (c) and (d) show the numbers of translation page reads and writes in flash memory, respectively; (e) shows the system
response times; (f) shows the overall write amplifications.

1

Normalized Block Erase
Count
o o
> 2

0.2

HDFTL mTPFTL SFTL ® Optimal

Financiall Financial2 MSR-ts

(a) Block erase count

MSR-src

Probability of Replacing A

90%

80%

80% 5

70% o %
Z 60% 5 70%
G S0% £ 65%
Z 40% @ :
a 30% S 60%

20% o

10% 55%

0% 50%

DFTL — s rs rshc DFTL — rs rsbc

(b) Probability of replacing a dirty entry (c) Cache hit ratio

Figure 7: (a) shows the block erase count; (b) and (c) show the benefits of each TPFTL configuration on the probability of

replacing a dirty entry and cache hit ratio in Financiall workload. In (b) and (c),

s

‘b’, ‘c’, ‘1’, and ‘s’ mean that the request-level

prefetching, selective prefetching, batch-update replacement and clean-first replacement are turned on, respectively. Specially,
- refers to the TPFTL variant without any prefetching or replacement optimization, and ‘rsbc’ refers to the complete TPFTL.

1

Normalized System
Response Time

DFTL —

(a) System response time

S

rs rshc

Write Amplification

w
"

5.5

4

wn

IS

DFTL — rs rshc

—e—Financial 1 -e-Financial 2 ==MSR-ts ~=~MSR-src

10%
8% \
6% \
4% \\
2% .
0% °

D o A (XL Ao B xS
NS RO CARCIIT AN SN N
NGRS AT

Probability of Replacing A
Dirty Entry

(b) Write amplification (c) Impact of cache sizes on write amplification

Figure 8: (a) and (b) show the benefits of each TPFTL configuration on system response time and write amplification in
Financiall workload; (c) shows the impact of cache sizes on the probability of replacing a dirty entry of TPFTL. In (c), the
X-axis represents the cache sizes, which are normalized to the size of the entire mapping table (each entry takes 8B).

12

MSR-src

—e—Financial 1 -e-Financial 2 ==MSR-ts
100%
90%
80%
70%
60%
50%

2.4
2.2

2
1.8
1.6
1.4
1.2

—

—

Cache Hit Ratio
Normalized System

Response Time

TS T - T SVAA P - B S S MR
N VR CER ORGSR N
RGN

(a) Probability of replacing a dirty entry

——Financial 1 —~Financial 2 =-MSR-ts

1 —

I I A T R SR C S
N 2% WP 00 Y A\ AN
NSNS

(b) Cache hit ratio

MSR-src —e—Financial 1 —e=Financial 2 —e=MSR-ts MSR-src

\‘\\:‘\\

~

Write Amplification
N w »
twivswn

e h
=N

o o R R R IS
» \/\‘f)\/\’\/\/\’\/\/\\/\’\,\’\/\\

(c) System response time

Figure 9: Impact of cache sizes on the cache hit ratio, system repsonse time, and write amplification of TPFTL.

because data page writes account for a great amount of total
page writes, as it is shown in Figure 6(f). For MSR
workloads, only a few translation page updates are incurred
during address translation because of high hit ratios, and
almost no migrations of valid pages have occurred during
GC operations because most writes are sequential. Thus,
write amplifications in MSR workloads are close to 1,
namely, very few extra writes are introduced. For Financial
workloads, the write amplifications of FTLs range from 2.4
to 5.1 because of frequent translation page updates and
massive page migrations. Nonetheless, TPFTL reduces the
write amplifications by an average of 26.2% and 13.1% in
Financial workloads, and an average of 13.8% and 2.3% in
MSR workloads, respectively, compared to DFTL and
S-FTL. Accordingly, Figure 7(a) shows that the block erase
counts of TPFTL also decrease by an average of 34.5% and
11.8%, up to 55.6% and 17.1%, respectively, compared to
DFTL and S-FTL. Therefore, TPFTL achieves an
improvement on the lifetime of an SSD.

5) Benefits of Each Technique in TPFTL

To give further insight into the four techniques employed
by TPFTL, we take Financiall workload as an example to
investigate the benefits of each technique. Specifically, we
evaluate eight typical TPFTL configurations with the
techniques turn on and off. Each TPFTL configuration is
denoted by a monogram of enabled techniques, where ‘r’,
‘s’, ‘b’> and ‘c’ mean that the request-level prefetching,

selective prefetching, batch-update replacement and
clean-first replacement are turned on, respectively.
Specially, ‘" refers to the TPFTL variant employing

two-level LRU lists without any prefetching or replacement
optimization, and ‘rsbc’ refers to the complete TPFTL.
Figures 7(b), 7(c), 8(a) and 8(b) show the probabilities of
replacing a dirty entry, cache hit ratios, system response

times, and write amplifications of each TPFTL
configuration in Financiall workload, respectively.
In Figure 7(b), it is clear that compared to ‘—’, the

batch-update replacement (‘b’) significantly reduces the
probability of replacing a dirty entry, while the clean-first
replacement (‘c’) only achieves a little decrease due to rare

13

clean entries in Financiall workload. However, the
clean-first replacement further reduces the probability by
54.3% in ‘bc’, compared to ‘b’. This is because the
batch-update replacement can write back more dirty entries
on each eviction of a dirty entry when they are postponed to
be replaced, indicating that the clean-first replacement is an
effective complement to the batch-update replacement.
Considering the prefetching techniques, ‘rsbc’ has a higher
probability than ‘bec’, because the prefetching increases the
probability as more entries are replaced each time.

In Figure 7(c), compared to ‘-’, the request-level
prefetching (‘r’), the selective prefetching (‘s’), and their
alliance (‘rs’) increase the hit ratio by 4.7%, 5.6% and 11%,
respectively. This reveals that the request-level prefetching,
which leverages the sequentiality in each large request, and
selective prefetching, which leverages the sequentiality
among requests, supplement each other well. In addition,
-’ achieves a little higher hit ratio than DFTL, verifying
that the page-level LRU does not degrade the hit ratio. We
can also conclude that the replacement techniques have
little effect on the hit ratio.

Figure 8(a) shows that compared to ‘-’, the replacement
techniques (‘bc’) and the prefetching techniques (‘rs’)
reduce the system response time by 24.9% and 10.4%,
respectively. Moreover, they reduce the write amplification
by 21.1% and 9.1%, respectively, according to Figure 8(b).
These results manifest the efficiency of the replacement
policy and loading policy of TPFTL. Note that ‘bc’
outperforms ‘rsbc’ in Financiall workload, although ‘rsbc’
has a higher hit ratio. This indicates that the probability of
replacing a dirty entry may play a more important role in
deciding the performance and write amplification of an
SSD than the hit ratio, most probably in workloads
dominated by random writes.

6) Impact of Cache Sizes

We have shown the experiment results about the
performance and write amplification of TPFTL with a
mapping cache of the same size. Then, we would like to see
the impact of cache sizes on TPFTL. Figures 8(c) and 9
show the probabilities of replacing a dirty entry, cache hit

ratios, normalized system response times and write
amplifications of TPFTL with varying cache sizes. Cache
sizes are normalized to the size of the entire page-level
mapping table. Specially, ‘1/128 refers to the cache size
that we used in the preceding experiments, and ‘1’ refers to
the cache size that accommodates the entire mapping table.

As shown in Figure 8(c), the probabilities of replacing a
dirty entry of TPFTL decrease with increasing cache
capacity and reach 0% when the mapping table is entirely
cached. This is because the average number of entry nodes
in each TP node gets bigger with a larger cache, and each
writeback makes more dirty entries to be clean, which helps
to postpone the evictions of dirty entries in turn. As shown
in Figure 9(a), the hit ratios of TPFTL increase with
increasing cache capacity as more mapping entries can be
held, and reach 100% when the mapping table is entirely
cached. The relatively low hit ratios for Financial traces are
due to their large working sets.

Figures 9(b) and 9(c) show that both the response times
and the write amplifications of TPFTL decrease with
increasing cache capacity. The response time is normalized
to that of TPFTL with ‘1’ cache size. A larger cache helps
little in MSR workloads for two reasons. First, TPFTL
almost eliminates the address translation overhead by
achieving high hit ratios, higher than 92%, as well as low
probabilities of replacing a dirty entry, less than 8%.
Second, the strong sequentiality in MSR workloads leads to
few migrations during GC operations. On the other hand, a
larger cache can further improve the performance and
lifetime so as to be rewarding in Financial workloads. This
is because not only random accesses limit the improvement
of the hit ratio, but also random writes introduce significant
GC overhead. Although FTLs usually find themselves at an
unfavourable position in cases of random write intensive
workloads, TPFTL steps forward by reducing extra writes
caused by address translation.

7) Space Utilization of the Mapping Cache

Employing two-level LRU lists provides an opportunity
to compress the storage space of each mapping entry in
the cache. Thus, TPFTL can hold more entries than DFTL
in the cache of the same capacity. Figure 10 shows the
improvements of the cache space utilization of TPFTL with
different cache sizes, compared to DFTL. We see that larger
improvements, up to 33%, are obtained with a larger cache.
This is because a larger cache enables more entries to be
cached in the compressed form. The reason of the 33% limit
is that the size of each cached entry is compressed from
8B to 6B. Since the sequentiality of requests gathers lots of
entry nodes in a few TP nodes, the improvements in MSR
workloads are greater than those in Financial workloads. A
higher space utilization implies a higher hit ratio and a lower
probability of replacing a dirty entry.

14

—e—Financial 1 —=Financial 2 —=MSR-ts —=~MSR-src

2 35%

=

O O 30%

B ®

o N 25%

c =

Q -~

g2 20%

o 9

3 & 15%

g &

e 10%

- Vo >R D YN
N 2° AP @ Y WP AN
\/\‘0\,\'\/\/\\»\,\\,\\/\ STNN

Figure 10: Improvement of cache space utilization.

6. Conclusion

This paper develops a performance model and a write
amplification model for a demand-based page-level FTL to
analyze the negative impact of extra operations caused by
address translation on the performance and lifetime of an
SSD, respectively. Two observations are noted based on the
model analysis. First, the extra operations degrade both the
performance and lifetime. Second, both a high hit ratio and
a low probability of replacing a dirty entry of the mapping
cache play a crucial role in reducing the system response
time as well as the overall write amplification. Then, we
propose a new demand-based page-level FTL, called
TPFTL. Considering the different access units between
flash memory and the mapping cache, TPFTL employs
two-level LRU lists to organize the mapping entries in the
cache. Further, a workload-adaptive loading policy is used
to jointly exploit the temporal locality and spatial locality in
workloads to improve the cache hit ratio, and an efficient
replacement policy is utilized to minimize the probability of
replacing a dirty entry. Extensive evaluations with
enterprise workloads show that TPFTL can efficiently
leverage a small cache space to perform fast address
translation with low overhead and thus to improve the
performance and lifetime of an SSD.

Acknowledgement

We are grateful to our shepherd Michael Swift and the
anonymous reviewers for their insightful feedback. This
work was sponsored in part by the National Basic Research
Program of China (973 Program) under Grant No.
2011CB302303 and the National Natural Science
Foundation of China No. 61300047, No. 61370063, and
No. 61472152. The work conducted at VCU was partially
sponsored by U.S. National Science Foundation under
Grants CNS-1320349 and CNS-1218960. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not
necessarily reflect the views of the funding agencies.

References

[1] Traces from UMass Trace Repository. http://traces.
cs.umass.edu/index.php/Storage/Storage.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for SSD
performance. In Proceedings of USENIX Annual Technical
Conference, pages 57-70, 2008.

[3] R. Bryant, O. David Richard, and O. David Richard.
Computer systems: a programmer’s perspective, volume 2.
Prentice Hall Upper Saddle River, 2003.

[4] E. Budilovsky, S. Toledo, and A. Zuck. Prototyping a high-
performance low-cost solid-state disk. In Proceedings of the

4th Annual International Conference on Systems and Storage,
2011.

[5] FE. Chen, T. Luo, and X. Zhang. CAFTL: a content-aware
flash translation layer enhancing the lifespan of flash memory
based solid state drives. In Proceedings of the 9th USENIX
Conference on File and Stroage Technologies (FAST), pages
77-90, 2011.

[6] T. Chung, D. Park, S. Park, D. Lee, S. Lee, and H. Song.
System software for flash memory: a survey. In Proceedings
of Embedded and Ubiquitous Computing, pages 394-404.
Springer, 2006.

[7] B. Debnath, S. Krishnan, W. Xiao, D. J. Lilja, and D. Du.
Sampling-based garbage collection metadata management
scheme for flash-based storage. In Proceedings of Mass
Storage Systems and Technologies (MSST), 2011.

[8] U. Drepper. What every programmer should know about
memory. http://lwn.net/Articles/252125/.

[9] Fusion-I0. Fusion-IO drive datasheet. www.fusionio.
com/data-sheets/iodrive—-data—-sheet/.

[10] E. Gal and S. Toledo. Algorithms and data structures for flash
memories. ACM Comput. Surv., 37(2):138-163, 2005.

[11] G. Goodson and R. Iyer. Design tradeoffs in a flash translation
layer. In Proceedings of Workshop on the Use of Emerging
Storage and Memory Technologies, 2010.

[12] J. Gray and B. Fitzgerald. Flash disk opportunity for server
applications. Queue, 6(4):18-23, 2008.

[13] L. M. Grupp, J. D. Davis, and S. Swanson. The bleak future
of NAND flash memory. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies (FAST), pages
17-24, 2012.

[14] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash
translation layer employing demand-based selective caching
of page-level address mappings. In Proceedings of
the International Conference on Architectural Support for
Programming Languages and Operating System (ASPLOS),
pages 229-240, 2009.

[15] X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write
amplification analysis in flash-based solid state drives. In

Proceedings of SYSTOR: The Israeli Experimental Systems
Conference, 2009.

[16] Y. Hu, H. Jiang, D. Feng, L. Tian, S. Zhang, J. Liu,
W. Tong, Y. Qin, and L. Wang. Achieving page-mapping FTL
performance at block-mapping FTL cost by hiding address

15

translation. In Proceedings of Mass Storage Systems and
Technologies (MSST), 2010.

[17] P. Huang, G. Wu, X. He, and W. Xiao. An aggressive
worn-out flash block management scheme to alleviate ssd
performance degradation. In Proceedings of the Ninth
European Conference on Computer Systems (EuroSys), 2014.

[18] A. Jagmohan, M. Franceschini, and L. Lastras. =~ Write
amplification reduction in NAND flash through multi-write
coding. In Proceedings of Mass Storage Systems and
Technologies (MSST), 2010.

[19] S. Jiang, L. Zhang, X. Yuan, H. Hu, and Y. Chen. S-FTL:
an efficient address translation for flash memory by exploiting
spatial locality. In Proceedings of Mass Storage Systems and
Technologies (MSST), 2011.

[20] X. Jimenez, D. Novo, and P. Ienne. @ Wear unleveling:
improving NAND flash lifetime by balancing page endurance.
In Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST), pages 47-59, 2014.

[21] H. Kim and S. Ahn. BPLRU: a buffer management scheme for
improving random writes in flash storage. In Proceedings of
the 6th USENIX Conference on File and Storage Technologies
(FAST), 2008.

[22] S. Ko, S. Jun, K. Kim, and Y. Ryu. Study on garbage
collection schemes for flash-based linux swap system. In
Proceedings of Advanced Software Engineering and Its
Applications (ASEA), pages 13-16, 2008.

[23] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song. A
log buffer-based flash translation layer using fully-associative
sector translation. ACM Trans. Embed. Comput. Syst., 6(3),
2007.

[24] S. Lee, D. Shin, Y. Kim, and J. Kim. LAST: locality-aware
sector translation for NAND flash memory-based storage
systems. SIGOPS Oper. Syst. Rev., 42(6):36-42, 2008.

[25] C. Li, P. Shilane, F. Douglis, D. Sawyer, and H. Shim.
Assert(!Defined(Sequential 1/0O)). In Proceedings of the 6th
USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2014.

[26] J. Li, K. Zhao, X. Zhang, J. Ma, M. Zhao, and T. Zhang.
How much can data compressibility help to improve nand
flash memory lifetime? In Proceedings of 13th USENIX
Conference on File and Storage Technologies (FAST), pages
227-240, 2015.

[27] M. Li, E. Varki, S. Bhatia, and A. Merchant. TaP: table-
based prefetching for storage caches. In Proceedings of the
6th USENIX Conference on File and Storage Technologies
(FAST), 2008.

[28] J. Liu, Y. Chai, X. Qin, and Y. Xiao. PLC-Cache: endurable
SSD cache for deduplication-based primary storage. In
Proceedings of Mass Storage Systems and Technologies
(MSST), 2014.

[29] Y. Lu, J. Shu, and W. Zheng. Extending the lifetime of flash-
based storage through reducing write amplification from file
systems. In Proceedings of the 11th USENIX Conference on
File and Storage Technologies (FAST), pages 257-270, 2013.

[30] Y. Lu, J. Shu, and W. Wang. ReconFS: a reconstructable file
system on flash storage. In Proceedings of the 12th USENIX

Conference on File and Storage Technologies (FAST), pages
75-88, 2014.

[31] Micron. MLC 25nm Micron NAND Flash L74A 64Gb
128Gb 256Gb 512Gb Asynchronous/Synchronous NAND
Flash Memory Data Sheet, 2009.

[32] Microsoft. MSR Cambridge Traces.
snia.org/traces/388.

[33] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS:
random write considered harmful in solid state drives. In
Proceedings of the 10th USENIX Conference on File and
Storage Technologies (FAST), pages 139-154, 2012.

[34] W. Mingbang, Z. Youguang, and K. Wang. ZFTL: a zone-
based flash translation layer with a two-tier selective caching
mechanism. In Proceedings of the 14th IEEE International
Conference on Communication Technology (ICCT), 2011.

[35] S. Moon and A. N. Reddy. Write amplification due to ECC on
flash memory or leave those bit errors alone. In Proceedings
of Mass Storage Systems and Technologies (MSST), 2012.

[36] Y. Pan, G. Dong, and T. Zhang. Error rate-based wear-leveling
for NAND flash memory at highly scaled technology nodes.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 21(7):1350-1354, 2013.

[37] D. Park, B. Debnath, and D. Du. CFTL: a convertible
flash translation layer adaptive to data access patterns. ACM
SIGMETRICS Performance Evaluation Review, 38(1):365—
366, 2010.

[38] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee. CFLRU: a
replacement algorithm for flash memory. In Proceedings of
the 2006 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), pages 234—
241, 2006.

[39] Z. W. Qin, Y. Wang, D. Liu, and Z. Shao. A two-level caching
mechanism for demand-based page-level address mapping
in NAND flash memory storage systems. In Proceedings
of the 17th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 157-166, 2011.

[40] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. Chen,
R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H. Lung,
et al. Phase-change random access memory: a scalable
technology. IBM Journal of Research and Development, 52
(4.5):465-479, 2008.

[41] Samsung. SSD 840 EVO 2.5” SATA 1II
http://www.samsung.com/us/computer/
memory-storage/MZ-7TE1TOBW.

[42] K. Vitto. LSI Announces SandForce SF3700: SATA and PCle
in One Silicon. http://www.anandtech.com/show/
7520/.

[43] C. Wang and W. Wong. ADAPT: efficient workload-
sensitive flash management based on adaptation, prediction
and aggregation. In Proceedings of Mass Storage Systems and
Technologies (MSST), 2012.

[44] C. Wang and W. Wong. TreeFTL: efficient RAM management
for high performance of NAND flash-based storage systems.
In Proceedings of the Conference on Design, Automation and
Test in Europe, pages 374-379. EDA Consortium, 2013.

http://iotta.

1TB.

16

[45] Q. Wei, B. Gong, S. Pathak, B. Veeravalli, L. Zeng, and
K. Okada. WAFTL: a workload adaptive flash translation
layer with data partition. In Proceedings of Mass Storage
Systems and Technologies (MSST), 2011.

[46] Q. Wei, C. Chen, and J. Yang. CBM: a cooperative buffer
management for SSD. In Proceedings of Mass Storage
Systems and Technologies (MSST), 2014.

[47] G. Wu and X. He. Delta-FTL: improving SSD lifetime via
exploiting content locality. In Proceedings of the 7th ACM
European Conference on Computer Systems (EuroSys), pages
253-266, 2012.

[48] G. Wu and X. He. Reducing SSD read latency via NAND
flash program and erase suspension. In Proceedings of the
10th USENIX Conference on File and Storage Technologies
(FAST), pages 117-123, 2012.

[49] G. Wu, B. Eckart, and X. He. BPAC: an adaptive write
buffer management scheme for flash-based solid state drives.
In Proceedings of Mass Storage Systems and Technologies
(MSST), 2010.

[50] J. Yang, N. Plasson, G. Gillis, N. Talagala, S. Sundararaman,
and R. Wood. HEC: improving endurance of high
performance flash-based cache devices. In Proceedings of the
6th International Systems and Storage Conference, 2013.

[51] Y. Yang and J. Zhu. Analytical modeling of garbage collection
algorithms in hotness-aware flash-based solid state drives.
In Proceedings of Mass Storage Systems and Technologies
(MSST), 2014.

[52] J. Zhang, M. Shihab, and M. Jung. Power, energy and thermal
considerations in SSD-based I/O acceleration. In Proceedings
of the 6th USENIX conference on Hot Topics in Storage and
File Systems, 2014.

[53] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. De-indirection for flash-based ssds with
nameless writes. In Proceedings of the 10th USENIX

Conference on File and Storage Technologies (FAST), pages
1-16, 2012.

