On the Cooling of Energy Efficient Storage

Jian Zhou'Z2, Jun Wangz, Fei Wu'! ", Changsheng Xie!, and Dezhi Han?

"Huazhong University of Science & Technology
"Wuhan National Laboratory for Optoelectronics
ZUniversity of Central Florida
3Shanghai Maritime University
“Corresponding Author: wufei @hust.edu.cn

Abstract—Energy consumption has become an important issue
in storage systems. Existing energy control solutions emphasize
power consumption without considering re- liability degradation
that results from overburden of those long standing disks. In this
paper, we develop a novel multiple criteria optimization scheme
based on Fuzzy Decision Making theory, for the Cool Energy
Efficient Storage System called CEES. CEES aims to enforce
a temperature constraint as well as performance requirements
while also keeping energy consumption to a minimum. This is
achieved by aggregating all the decision criteria, such as I/O
performance, power consumption, temperature and frequency of
disk-status transition. We first calculate the satisfaction degree
of each criteria. Then, we use the weighted averaging satisfaction
degree to determine the system control sequence. The experimen-
tal results show that CEES is able to reduce disk temperature
by 20-30% as compared with existing control methods, while
obtaining comparable performance and power consumption.

Keywords : Temperature, Fuzzy control, Energy-efficient stor-
age.

I. INTRODUCTION

Due to staggering electricity bills and high disk failure
rates, an increasingly large number of energy and temperature
control requirements have been introduced on modern storage
systems. In order to meet these requirements, data centers
have been considering increasing the setpoint temperature at
which to run the cooling system[1], [2]. On the other hand,
various energy conservation schemes in storage systems have
been developed to aggregate heavy workloads on a few disks
with a method called Energy Efficient Storage. While both of
these methods reduce energy consumption, they could elevate
temperature levels on long standing disks and ultimately cause
them to overheat. S. Yin [3] studied the reliability model of
Energy Efficient Storage, which indicated that the temperature
between disks, the age of the disks, and the distribution of
workload between disks can elevate their failure rate. N. El-
Sayed [2] found that of the three factors listed above, the
temperature of the disks had the greatest influence on their
failure rate.

Researchers have developed several well recognized temper-
ature constrained schedule schemes for CPUs[4], clusters[5],
and connection intensive applications[6]. J. Moore [7] and
C. Bash [8] developed open-loop search and optimization
methods based on the assumption that the power consumption
of chip multiprocessors (CMPs) at each Dynamic Voltage and
Frequency Scaling (DVES) level can be estimated accurately.

While this method is effective when the workload pattern is
predictable, dramatic workload changes may lead to severe
performance degradation or even power constraint violations.

Recently, several closed-loop control solutions have been
developed for CMPs using heuristics [4], [5], that employ basic
control theory such as model predictive control (MPC). How-
ever, MPC requires a pre-defined fixed temperature constraints
for the controlled system[9]. The fixed temperature constraint
is used to initiate the process of cooling down the disks if
their temperature surpass a certain limit. This rigid control has
several drawbacks. First, the optimal temperature at which to
set constrains can often vary in real world applications. Also,
if the workload rises to an extreme level, the MPC will be
unable to find a low temperature working groups at which
the desired constraint can be achieved with out using mixed
constraints or multi-objective functions. If the constraint is set
at a high temperature, the disks will be in danger of failure. If
we set multiple levels of constraints, the system may still be
exposed in frequently disk status switching when performing
the transfer between each level. The Fuzzy Decision Making
implemented by CEES can allow for a smooth transition
between a range of constraints, thus eliminating the possibility
of a sudden spike in the storage system. Second, multiple con-
straints such as warrantable service time, power-state transition
frequency of given discs, etc. [3], [10] need to be formalized
in the predefined model. This makes the design of a MPC
controller very complex. CEES can simplify multidimensional
optimization into one dimensional optimization by aggregating
all the criteria.

In this paper, we attempt to apply fuzzy control theory
to thermal management in order to reduce disk temperature
in energy-efficient storage systems. Compared to the existing
work, the following contributions has been made.

o« We made the first attempt to address the temperature
overhead in existing Energy Efficient Storage.

o We employed Fuzzy Decision Making to achieve com-
plexity multi-constraint optimization.

The paper is organized as follows. Section II describes
the modeling, design and analysis of Fuzzy Decision Making
functions. Section III provides the implementation details and
Section IV presents extensive experiments and results. Section
V introduces related work. Finally, Section VI concludes the



paper.

II. DESIGN OF CEES

In order to perform temperature-constrained control, we
designed a feedback control loop. The key components in
the control loop include a femperature sensor on each disk,
a power monitor connected to the power supply circuit of
each disk and an online model estimator. Let SP denote the
sampling period, and %k denote the sampling point. Sj denotes
current time active disk set at time k, L denotes the data layout,
Per fi, denotes the required performance by the user at time k,
Py, denotes the measured disk power consumption, 7}, denotes
the measured disk temperature and Oj, denotes the operation
time since the last spin down or spin up a disk. S, L, Per f,
Py, Ty, and Oy, are all input signals for our fuzzy controller to
calculate an appropriate active disk set in the next time window
SP. We express our feedback control loop in the following
function:

Sky1 = F(Sk, L, Per fy, Py, Ty, Ox) (1)
where, I’ denotes the feedback algorithm.

The control loop is invoked periodically and its period
is chosen based on a trade-off between actuation overhead
and system settling time. The following steps are invoked at
the end of every control period. 1) The monitors collect the
temperature and power consumption of each disk as well as
the overall performance status of the storage system. 2) The
online model estimator updates its parameter based on the
collected data. 3) Based on the collected data, the controller
computes future temperatures of the storage system and selects
the working disks accordingly.

We propose Fuzzy Decision Making (FDM) as the feedback
algorithm F' [11] for the temperature-constrained scheduler
for Energy Efficient Storage. This method defines a range of
temperature constraints and quantifies the constraints with a
satisfaction degree from O to 1; thus, a smooth control can be
achieved.

The controller uses the system model to predict the con-
trol behavior over sampling periods, H,,. This is called the
prediction horizon. The control objective is to select an input
trajectory that minimizes the objective function. The objective
function, is formulated to represent the satisfaction of the
decision criteria and control goals after applying the control
actions in the entire prediction horizon, H,,. An input trajectory
includes the control inputs in the following H,, sampling
periods. Sii1, ..., Sktm,,, Where Hy, is called the control
horizon. The notation Sj; means that the disk state vector
of the storage system at time %k + 7 depends on the conditions
at time k. Once the input trajectory is computed, only the
first element Sy41 is applied as the control input to the
system. At the end of the next sampling period, the prediction
horizon slides on sampling period and the input is computed
again based on the feedback from the performance, power and
temperature monitors.

A. Multi-criteria Constraints in Power Consumption Opti-
mization
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Because I/0 performance, Power Consumption, Tempera-
ture, and Operation Intervalare measured with separate contin-
uous units, their individual satisfaction levels can be mapped
to the interval [0,1]. The control object is subjected to three
sets of constraints. First, the performance level should meet
the minimal requirements of the workload. Second, the tem-
perature of each disk should be below a given threshold (e.g.,
50°C). Third, the interval between power up and shut down of
a certain disk should be above a given time (e.g., 30 minutes).
In MPC, these constraints are the “hard” constraints, which
could create a scenario in which no optimal solution can be



achieved [12]. Therefore, in our design, fuzzy constraints are
used. For simplicity and reserving the “hard” constraints to
indicate the physical limitation, the satisfaction of the fuzzy
constrains is expressed by the liner membership function
shown in Figure 1.

The fuzzy temperature constraint criteria indicate how well
the temperature of each disk are satisfied. Basically, there are
two types of temperatures regarding the disk failure model.
Sankar states that there is an exponential relationship between
the temperature and disk failure models [13]. El-Sayed points
out that for temperatures below 50°C, disk failure rates grow
as a linear function [2] when the temperature increases. Both
of the models can be used as the temperature membership
function. For simplicity, the fuzzy temperature constraint is
formulated by the following equation:

1, Ty < oo
ot1—Tgti
oo 2 0t0 < Tits < o1

0, Thys = 011

2

Ht(k+i) =

Where, o4 and o is the temperature at which the con-
straint is fully satisfied and unsatisfied respectively. For a
regular storage system, oo could be 30°C', and o4; could be
55°C.

The fuzzy performance constraints criteria indicate how
well the performance requirements are satisfied. Sufficient
performance redundancy are essential for storage systems, in
order to ensure successful and reliable data service. The fuzzy
performance constraints can be formulated by the following
equation:

0 Perfk-h
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Perfy,
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Where, 0,0 and o, is the portion of performance redun-
dancy at which the performance constraints are fully unsat-
isfied and satisfied respectively. These constraints could be
selected based on specific workloads. For a regular storage
system, o, could be 0.8, and 0,1 could be 1.2.

The fuzzy operation interval constraint criteria indicate
the time interval between two disks status switching. It is
formulated by the following equation:

0,Ok+i < 000
Okyi—0o0
T2 000 < Opti < 001

1,014 > 001

HO(k+i) = “4)

Where, 0,9 and o, is the interval at which the constraints
fully unsatisfied and satisfied respectively. For a regular stor-
age system, g,9 could be 30 minitus, and o,; could be 60
minitus.

A fuzzy set in the appropriate domain characterizes both the
fuzzy goals, such as reducing the power consumption, and the
fuzzy constraints, such as temperature constraints. Applying

FDM in the temperature-constrained power controller allows
the combination of goals and constraints to be achieved. The
estimated power consumption is mapped to the interval [0, 1]
which indicates how well the power consumption satisfies the
goal to minimize it by utilizing a membership function. The
fuzzy goals are defined by a Gaussian membership function
that is never been zero, as shown in Figure 2. That indicates
that high power consumption is an allowable but not a desir-
able state. The fuzzy goal can be formulated by the following
equation:

(SktiPr)?

He(k+i) = exp(— 5y 2 ) )

Where Sj; is the disk state vector at time k + ¢, Py is
the power consumption vector of each disk, o. is used to
determine how fast the fuzzy goal approach as the power
consumption increase. For a regular storage system, the o,
could be half of the max energy consumption in a sampling
period.

B. Aggregation of Criteria for Energy Efficient Storage

Because all of performance criteria can effect each other, the
satisfaction levels of all of these factors must be aggregated
into an equation and maximized. The fuzzy criteria aggrega-
tion is the process that computes the joint satisfaction of all the
criteria [12]. The confluence of goals and constraints can be
done by aggregating the membership values. The membership
value p. (k) for the control sequence 7 is obtained using the
aggregation operators ®, ®, and &, to combine the decision
criteria in Equation 6:

pr (k) = (,ue (k+1) Dg --- Qg Ne(k-i—H,,))
® (Up(k+1) Bc - Oc ,up(k-‘er)) ©)
@ (He(ht1) e - O Pt (k+-H,y))
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In Equation 6, ®, denotes an aggregation operator for
combining the goals, ®. denotes an aggregation operator for
combining the constraints, ® denotes an aggregation operator
for combining the aggregated goals and constraints. The
operator ®, is the average operator. It computes the average
satisfaction of the energy consumption. So, the accumulated
energy consumption, rather than the energy consumed in
certain sampling period, is taken in to account. The operator
®. is the minimum operator. The smallest satisfaction of the
constraints are chosen as the decision criteria. The operator ®
is the weighted averaging operator.

The control object is to find a solution that best satisfies
the joint constraint of all the fuzzy criteria. The ideal results
in which we desire is a situation that all the criteria are
satisfied. In this case, the storage system will get 1) sufficient
performance redundancy, 2) low temperature of disks, and 3)
few disks spin down spin up actions, and 4) minimal energy
consumption in the prediction horizon. The requirement mani-
fested by an “and” operator of the criteria values. The ordered



weighted averaging aggregation operators [14] are used in
the aggregation of goals and constraints. Assume the ordered
weight vector W is [we, wp, Wy, W], the fi can be expressed
as:

P = Welle + Wplp + Wil + Wollo (N

Where we + wp, +w; +w, = 1.

The translation of control goals and constraints to a mem-
bership value avoids the specification of the criteria in a
large multidimensional space. The decision criteria 7 should
be satisfied as much as possible, which corresponds to the
maximal value of the overall satisfaction. Thus, the optimal
sequence of control actions 7* is found by the maximization
of L.

7 = argmax (g, ) 8)

III. PROTOTYPE AND IMPLEMENTATION

In this section, we describe our physical experimental
testbed and benchmarks, as well as the implementation details
of each component in CEES control loop.

We develop CEES prototype on a machine with an Intel
Dual-Core E5200 2.5GHz CPU, 2G Bytes DDR2 memory
running an Ubuntu 11.04 operating system. We implement a
trace replayer on our power-proportional data layout based
storage system testbed and measure the performance and
power consumption of disks for each run. Due to the hardware
limit, the prototype contains 16 disks, which are connected by
an SAS cable. To measure the power consumption of disks,
we adopt a plug-in real-time multi-meter, called ZH102.

A. Trace Replay Framework

In our prototype system, we implement the trace replay
framework as a C program running under Ubuntu Server
12.04. Because of the heavy integration of our control algo-
rithm, a new trace replay code are developed rather than using
an existing one. It has 8.5k code lines in all. The main idea
is to use the “libaio” programming library to asynchronously
access I/O of the storage subsystem (sending I/O requests to
the storage subsystems). The trace replay framework consists
of 6 modules: performance requirements monitor, power &
temperature monitor, model predictor, fuzzy controller, data
layout manager, and virtual disk layer.

B. Power Proportional Layout

We implemented power proportional layout [15] in our
storage system. In the experiment, we made three replicas
of the whole data set in the virtual disk. The first replica is
spread on three disks, which are called disk Group I in the
experiment. The second replica is stored on five disks, which
are called disk Group 2 in the experiment. The last replica is
saved on eight disks, which are called disk Group 3 in the
experiment. We use a total of 16 disks in the experiments.

C. Write Off-loading

CEES use an alternated version of Write Off-loading [16]
technique to maintain the power proportional feature. Write
Off-loading is an energy saving technique for storage system,
which prolong the idle time of standby disks by redirecting
writes to active disks temporarily. It redirects the writes to
the currently active disks and updates the writes to the other
replicas when a specific trigger occurs. While the trigger used
in the original Write Off-loading is the off-loaded time span or
data amount, the only trigger used in our experiment, including
CEES and other baselines, is that the controller changes the
active disk sets based on the constraints.

IV. EXPERIMENTAL RESULTS AND ANALYSES

We present our experimental results and associate in-depth
analyses here.

A. Workload

We use a mixture of real-world and synthetic traces to com-
prehensibly study the impact of different storage architectures
on a wide spectrum of enterprise-scale workloads. Table I
presents salient features of our workloads. We employ a write-
dominant I/O trace from an OLTP application running at a
financial institution and a popular Internet web search machine
[17] made available by the Storage Performance Council
(SPC), henceforth referred to as the Financiall, Financial2 and
Websearch traces. These traces are collaboratively collected
by HP and Storage Performance Council. Exchange [18] was
collected at the Microsoft Exchange 2007 SP1 server, which
is a mail server for 5000 corporate users. MSN [18] was
collected at the Microsoft’s several Live file servers. Develop
[18] was obtained from a file server accessed by more than
3000 users to download various daily builds of Microsoft
Visual Studio. Radius [18] was obtained from a RADIUS
authentication server that is responsible for worldwide corpo-
rate remote access and wireless authentication.

‘Workloads Avg.Req.Size Read Avg.Req.Arrv.
read/write(KB) (%) Time (ms)

Financial 1 2.25/3.75 23.2 8.19
Financial2 2.3/2.9 82.3 11.08
Websearch 15.15/8.6 99.9 2.99
Exchange 15.15/14.5 30.8 1179

MSN 9.6/11.1 67.2 513

Develop 18.45/10.95 88.6 1985

Radius 124.25/12.45 17.1 9475

TABLET

ENTERPRISE-SCALE WORKLOAD CHARACTERISTICS.

B. Baselines

The first baseline system, referred to Rabbit[15], is a power
proportional storage. It ensures ideal power-proportionality, by
providing multiple gears of storage to work under different
performance requirements. All the baselines including CEES
are use the same data layout in order for a fair comparison.

The second baseline, referred to Simple Feedback Controller
(SFC), is a simple temperature feedback control loop. SFC



Temp.(°C) Power(WW) Actions Satisfy
Min/Avg/Max Avg Avg
CEES 33.5/38.6/39.8 48 4 0.79
MPC 36.0/38.0/38.5 46 9 0.46
SFC 30.2/40.3/42.0 47 6 0.38
TABLE 1T

MULTI-CONSTRAINTS OPTIMIZATION.

represents a typical feedback solution which use the real-time
per-disk temperature to control the behavior of disks without
relying on an online model estimator. We compare our CEES
against SFC to show that a well-designed simple temperature
feedback controller may still fail to enforce accurate temper-
ature control and thus degrade performance.

The third baseline, referred to Model Predict Control
(MPC), is a recent power management solution in CPUs[4]. As
we discuss before, the MPC control of CPUs cannot be directly
used in storage system. We implement the MPC controller
under the framework of SFC control. It shares most part of the
SFC controller. A fundamental difference between SFC and
MPC controller is that SFC simply uses the moving average
temperature of a selected disk by one step, depending on
whether the measured temperature is lower or higher than the
set point. In contrast, MPC computes a predicted temperature
level for each disk according to the temperature prediction
model.

C. Experiment

To demonstrate the superiority of the Fuzzy Constraint
Satisfaction design in CEES, we conducted a series of real
word experiment.

1) Multi-Constraints Optimization: One of the main con-
tribution of CEES is that it provides a better way to perform
multi-constraints optimization between performance require-
ment, temperature, power consumption and number of disk
status transfer actions.

In this experiment, we carefully choose the parameters
for CEES, MPC and SFC, which guarantee that the system
can run smoothly in a manipulated environment without
any interference on performance. The experiment runs for a
fixed 3 hours under WebSearch traces. We get the different
running state in Table II. We can see that CEES provides
a better way to control aggregated satisfaction of multiple
constraints compared to MPC and SFC, since they do not do
multiple constraints’ optimization and are not able to adjust
the constraints automatically. In this table, CEES has fewer
total control actions and achieves better aggregated satisfaction
degree. For MPC and SFC, aggregated satisfaction degree can
be designed to be higher if we configure the system in the
right way at each run. However, this is not practical.

In order to study the system behavior under heavy work-
loads, we accelerated the replay speed while replaying Web-
Search traces. In Table III, we can find that the controller
relatively consumes more power when the workload is low.
This is because of the exponential power consumption satisfac-
tion model has smaller slope at the lower power consumption

Replay Temp.(°C) Power(WW) Actions Satisfy

Speed Min/Avg/Max Avg Avg

x4 33.5/38.6/39.8 88 4 0.72

x8 36.0/39.2/38.5 130 5 0.63

x16 37.9/45.3/42.0 156 8 0.48

x32 41.2/48.3/52.0 162 10 0.35
TABLE TIT

MULTI-CONSTRAINTS OPTIMIZATION ACCELERATED TRACE REPLAY.

points. This design can help reserve more system performance
and reduce the temperature when the workload is low. When
the workload is high, the controller works harder. In this
experiments, the system reduce the system I/O performance
to maximize the satisfaction degree.

2) Temperature: In this experiment, we evaluate the re-
duction of overall disk temperature of CEES at different I/O
patterns, compared to the power proportional storage — Rabbit
[15]. In order to do a fair comparison, we choose looser
constrictions for SFC and MPC, so that they are able to run
stably at various conditions, because they do not have a well
designed constrict change policy. Figure 3 plots the normalized
average temperatures of disks with different control methods
under different workloads. The result shows that CEES can
significantly reduce the temperature adaptively and accurately
based on the online model prediction and fuzzy decision
making.
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3) Energy Consumption: In this experiment, we evaluate
the energy consumption under different workloads. Figure 4
shows that CEES has a minimal impact on the energy con-
sumption compared with normal power proportional storage.

>

o 11 [B@Rabbit B0 SFCOTMPCBECEES ||
&

el

g 1 it |
E "
£

S 09 i

Radius

Fincial 1

Fincial 2 WebSearch Exchange MSN Develop

Fig. 4. Normalized Energy Consumption under Different Traces.

4) Performance: In this experiment, we evaluate the impact
of our controller on the performance at different I/O intensities.
Figure 5 plots the average 1/O delay under different workloads.



It shows that CEES makes the least impact on the performance.
This is because CEES has a very accurate prediction module
and it can dynamically change the temperature threshold when
the temperature vibrates.
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V. RELATED WORK

Several studies have been conducted for the purpose of
studying the relationship between disk temperature and failure
rate. A study conducted by Google in 2007 [19] suggested
that lower temperatures are actually more detrimental to
disk reliability than higher temperatures. However a research
conducted by Microsoft in 2011 [13], [20] demonstrated that
Annualized Failure Rate (AFR) steadily increases as Hard
Disk Drive (HDD) temperature increases. The most recent
research conducted by N. El-Sayed in 2012 [2] suggests that
the reason why Google’s study arrived at the conclusion is
because when the study was conducted, many disks of various
models were used to aggregate the data and different models of
disks failed at different temperatures. N. El-Sayed [2] observed
that the increase in failures with respect to temperature tends
to be linear, except for very high temperatures (above 50°C").
Because of this relationship between disk temperature and
failure [2], [13], [20], [21], a temperature constrained control
scheme is essential to the well-being of Energy Efficient
Storage systems.

Moorey et. al. developed three dynamic thermal manage-
ments [7] to deal with the stability of the scheduling arith-
metic, avoid the changes in temperature and minimize the cost
of thermal management. Heath ef. al. developed a thermal
emulation model called Mercury along with a very simple
thermal feedback control called Freon [22]. These arithmetics
simply schedule the load to the low temperature node, but
may schedule the load to a machine that is hard to cool. In our
design, a online temperature estimation model is used to avoid
this. Abbasi proposed a two-tier dynamic server provision-
ing and workload distribution method in developing thermal
aware Internet data centers[23]. Weissel et. al. used Newton’s
Law of Cooling to predict dynamic thermal management for
distributed systems[24]. Ramos et. al. improved the C-Freon
in C-Oracle[25] using online thermal prediction. Their basic
method is to control the load intensity of a server. Wang et. al.
introduced the online model to predict the CPU temperature
control [4]. However, they do not study at which temperature
should we set the constraints. Our design gives a flexible

constraint for the temperature while balancing it with multiple
other constraints.

VI. CONCLUSIONS

In this paper, we present the first study of applying a Fuzzy
Decision Making theory in energy-efficient storage systems
to manage the energy while adhering to the temperature
constraints. Comprehensive experimental results on a physical
test-bed show that CEES outperforms two state-of-art algo-
rithms by significantly reducing the temperature in energy-
efficient storage systems. More specifically, CEES reduces
the temperature by 20% - 30% compared to current methods
such as Rabbit and MPC, while maintaining comparable
performance and power consumption.
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