
计算机系统分析与性能评价

陈进才 周健 李国宽

武汉光电国家研究中心

光电信息存储研究部

2022年秋 1系统分析与性能评价

Computer Systems Analysis and
Performance Evaluation

Transactional Memory

2022年秋 系统分析与性能评价 2

Overview
Introduction

Advantages of TM

Implementing TM

2022年秋 系统分析与性能评价 3

Abstraction for synchronization

• Raising level of abstraction for synchronization

• Machine-level synchronization prims:
• fetch-and-op, test-and-set, compare-and-swap

• We used these primitives to construct higher level, but still quite basic,
synchronization prims:

• lock, unlock, barrier

• Today:
• transactional memory: higher level synchronization

2022年秋 系统分析与性能评价 4

What you should know

• What a transaction is

• The difference between the atomic construct and locks

• Design space of transactional memory implementations
• data versioning policy

• con" ict detection policy

• granularity of detection

• Understand HW implementation of transaction memory

2022年秋 系统分析与性能评价 5

Lock/Unlock Example

• Deposit is a read-modify-write operation: want “deposit” to be
atomic with respect to other bank operations on this account.

• Lock/unlock pair is one mechanism to ensure atomicity (ensures
mutual exclusion on the account)

2022年秋 系统分析与性能评价 6

Programming with TM

• Declarative synchronization
• Programmers says what but not how

• No explicit declaration or management of locks

• System implements synchronization
• Typically with optimistic concurrency

• Slow down only on true conflicts (R-W or W-W)

2022年秋 系统分析与性能评价 7

Declarative vs. Imperative Abs.

• Declarative: programmer de# nes what should be done
• Process all these 1000 tasks

• Imperative: programmer states how it should be done
• Spawn N worker threads. Pull work from shared task queue

• Acquire a lock, perform operations, release the lock

2022年秋 系统分析与性能评价 8

Transactional Memory (TM)

• An atomic & isolated sequence of memory accesses

• Inspired by database transactions

• At commit, all memory writes take effect at once

• On abort, none of the writes appear to take effect

• No other code can observe writes before commit

• Transactions seem to commit in a single serial order

• The exact order is not guaranteed though

2022年秋 系统分析与性能评价 9

Advantages of TM

2022年秋 系统分析与性能评价 10

Example: Java 1.4 HashMap

• Map: Key → Value
• Not thread safe
• But no lock overhead when not needed

2022年秋 系统分析与性能评价 11

Synchronized HashMap

• Java 1.4 solution: synchronized layer
• Convert any map to thread-safe variant

• Uses explicit, coarse-grain locking specified by programmer

• Coarse-grain synchronized HashMap
• Pros: thread-safe, easy to program

• Cons: limits concurrency, poor scalability

• Only one thread can operate on map at any time

2022年秋 系统分析与性能评价 12

Better solution?

• Fined-grained synchronization: e.g., lock per bucket

• Now thread safe: but lock overhead even if not needed

2022年秋 系统分析与性能评价 13

Performance: Locks

2022年秋 系统分析与性能评价 14

Transactional HashMap

• Simply enclose all operation in atomic block
• System ensures atomicity

• Transactional HashMap
• Pros: thread-safe, easy to program
• Q: good performance & scalability?

• Depends on the implementation, but typically yes

2022年秋 系统分析与性能评价 15

Synchronization Example

• Goal: Modify node 3 in a thread-safe way.

2022年秋 系统分析与性能评价 16

1

2

43

Synchronization Example

• Goal: Modify node 3 in a thread-safe way.

2022年秋 系统分析与性能评价 17

1

2

43

Synchronization Example

• Goal: Modify node 3 in a thread-safe way.

2022年秋 系统分析与性能评价 18

1

2

43

Synchronization Example

• Goal: Modify node 3 in a thread-safe way.

2022年秋 系统分析与性能评价 19

1

2

43

Synchronization Example

• Goal: Modify node 3 and 4 in a thread-safe way.

• Locking prevents concurrency

2022年秋 系统分析与性能评价 20

1

2

43

TM Example: No Conflicts

• Goal: Modify node 3 and 4 in a thread-safe way.
• Transaction A: Read 1 2 3; Write 3
• Transaction B: Read 1 2 4; Write 4

2022年秋 系统分析与性能评价 21

1

2

43

TM Example: With Conflicts

• Goal: Modify node 3 and 4 in a thread-safe way.
• Transaction A: Read 1 2 3; Write 3
• Transaction B: Read 1 2 3; Write

2022年秋 系统分析与性能评价 22

1

2

43

Perf.: locks vs. transactions

2022年秋 系统分析与性能评价 23

Failure atomicity: locks

• Manually catch exceptions
• Programmer provides undo code on a case by case basis

• Complexity: what to undo and how…

• Some side-effects may become visible to other threads
• E.g., an uncaught case can deadlock the system

2022年秋 系统分析与性能评价 24

Failure atomicity: transactions

• System processes exceptions
• All but those explicitly managed by the programmer

• Transaction is aborted and updates are undone

• No partial updates are visible to other threads
• E.g., No locks held by a failing threads

2022年秋 系统分析与性能评价 25

Composability: locks

• Composing lock-based code can be tricky
• Requires system-wide policies to get correct

• Breaks software modularity

• Between an extra lock & a hard place
• Fine-grain locking: good for performance, but can lead to

deadlock
2022年秋 系统分析与性能评价 26

Composability: transactions

• Transactions compose gracefully
• Programmer declares global intent (atomic transfer)

• No need to know of global implementation strategy

• Transaction in transfer subsumes those in withdraw & deposit
• Outermost transaction defines atomicity boundary

• System manages concurrency as well as possible
• Serialization for transfer(A, B, $100) & transfer(B, A, $200)
• Concurrency for transfer(A, B, $100) & transfer(C, D, $200)

2022年秋 系统分析与性能评价 27

Advantages of TM

• Easy to use synchronization construct
• As easy to use as coarse-grain locks
• Programmer declares, system implements

• Often performs as well as fine-grain locks
• Automatic read-read concurrency & fine-grain concurrency

• Failure atomicity & recovery
• No lost locks when a thread fails
• Failure recovery = transaction abort + restart

• Composability
• Safe & scalable composition of software modules

2022年秋 系统分析与性能评价 28

Atomic() ≠ lock()+unlock()
• The difference

• Atomic: high-level declaration of atomicity

• Does not specify implementation/blocking behavior

• Does not provide a consistency model

• Lock: low-level blocking primitive

• Does not provide atomicity or isolation on its own

• Keep in mind
• Locks can be used to implement atomic(), but…

• Locks can be used for purposes beyond atomicity

• Cannot replace all lock regions with atomic regions

• Atomic eliminates many data races, but..

• Programming with atomic blocks can still suffer from atomicity violations. e.g., atomic
sequence incorrectly split into two atomic blocks

2022年秋 系统分析与性能评价 29

lock vs atomic

• Example: lock-based code that does not work with atomic

• What is the problem with replacing synchronized with
atomic?

2022年秋 系统分析与性能评价 30

Example: atomicity violation

• Programmer mistake: logically atomic code sequence
separated into two atomic() blocks.

2022年秋 系统分析与性能评价 31

TM: summary + benefits
• TM = declarative synchronization

• User specifies requirement (atomicity & isolation)

• System implements in best possible way

• Motivation for TM

• Difficult for user to get explicit sync right

• Correctness vs. performance vs. complexity

• Explicit sync is difficult to scale

• Locking scheme for 4 CPUs is not the best for 64

• Difficult to do explicit sync with composable SW

• Need a global locking strategy

• Other advantages: fault atomicity, …

• Productivity argument: system support for transactions can achieve 90% of the benefit of
programming with fined_x0002_grained locks, with 10% of the development time.

2022年秋 系统分析与性能评价 32

Implementing TM

2022年秋 系统分析与性能评价 33

TM implementation basics

• TM systems must provide atomicity and isolation
• Without sacrificing concurrency

• Basic implementation requirements
• Data versioning (ALLOWS abort)

• Conflict detection & resolution (WHEN to abort)

• Implementation options
• Hardware transactional memory (HTM)

• Software transactional memory (STM)

• Hybrid transactional memory
• e.g., Hardware accelerated STMs

2022年秋 系统分析与性能评价 34

Data versioning

• Manage uncommited (new) and commited (old) versions of
data for concurrent transactions

• Eager versioning (undo-log based)

• Lazy versioning (write-buffer based)

2022年秋 系统分析与性能评价 35

Eager versioning

• Update memory immediately, maintain “undo log” in case of abort

2022年秋 系统分析与性能评价 36

Lazy versioning

• Log memory updates in transaction write buffer, flush on commit

2022年秋 系统分析与性能评价 37

Data versioning
• Manage uncommited (new) and commited (old) versions of data for concurrent

transactions

• Eager versioning (undo-log based)
• Update memory location directly

• Maintain undo info in a log (per store penalty)

• + Faster commit

• – Slower aborts, fault tolerance issues (crash in middle of trans)

• Lazy versioning (write-buffer based)
• Buffer data until commit in a write-buffer

• Update actual memory location on commit

• + Faster abort, no fault tolerance issues

• – Slower commits

2022年秋 系统分析与性能评价 38

Conflict detection

• Detect and handle conflicts between transactions
• read-write conflict: transaction A reads addr X, which was

written to by pending transaction B

• write-write conflict: transactions A and B are pending, both
write to address X.

• Must track the transaction’s read-set and write-set
• Read-set: addresses read within the transaction

• Write-set: addresses written within transaction

2022年秋 系统分析与性能评价 39

Pessimistic detection

• Check for conflicts during loads or stores

• e.g., HW implementation will check through coherence
actions

• Contention manager decides to stall or abort transaction

• Various priority policies to handle common case fast

2022年秋 系统分析与性能评价 40

Pessimistic detection example

2022年秋 系统分析与性能评价 41

Optimistic detection

• Detect conflicts when a transaction attempts to commit
• HW: validate write-set using coherence actions

• Get exclusive access for cache lines in write-set

• On a conflict, give priority to committing transaction
• Other transactions may abort later on

• On conflicts between committing transactions, use contention
manager to decide priority

• Note: can use optimistic & pessimistic schemes together
• Several STM systems use optimistic for reads and pessimistic for

writes

2022年秋 系统分析与性能评价 42

Optimistic detection example

2022年秋 系统分析与性能评价 43

Conflict detection trade-offs

• Pessimistic conflict detection (a.k.a. “encounter” or “eager”)
• + Detect conflicts early

• Undo less work, turn some aborts to stalls

• – No forward progress guarantees, more aborts in some cases
• – Fine-grain communication
• – On critical path

• Optimistic conflict detection (a.k.a. “commit” or “lazy”)
• + Forward progress guarantees
• + Potentially less conflicts, bulk communication
• – Detects conflicts late, can still have fairness problems

2022年秋 系统分析与性能评价 44

Conflict detection granularity

• Object granularity (SW-based techniques)
• + Reduced overhead (time/space)

• + Close to programmer’s reasoning

• – False sharing on large objects (e.g. arrays)

• Word granularity
• + Minimize false sharing

• – Increased overhead (time/space)

• Cache line granularity
• + Compromise between object & word

• Mix & match → best of both words
• Word-level for arrays, object-level for other data, …

2022年秋 系统分析与性能评价 45

TM implementation space
• Hardware TM systems

• Lazy + optimistic: Stanford TCC

• Lazy + pessimistic: MIT LTM, Intel VTM

• Eager + pessimistic: Wisconsin LogTM

• Eager + optimistic: not practical

• Software TM systems
• Lazy + optimistic (rd/wr): Sun TL2

• Lazy + optimistic (rd)/pessimistic (wr): MS OSTM

• Eager + optimistic (rd)/pessimistic (wr): Intel STM

• Eager + pessimistic (rd/wr): Intel STM

• Optimal design remains an open question
• May be different for HW, SW, and hybrid

2022年秋 系统分析与性能评价 46

Hardware TM (HTM)

• Data versioning in caches
• Cache the write-buffer or the undo-log

• New cache meta-data to track read-set and write-set

• Can do with private, shared, and multi-level caches

• Conflict detection through cache coherence protocol
• Coherence lookups detect conflicts between transactions

• Works with snooping & directory coherence

• Notes
• Register checkpoint must be taken at transaction begin

2022年秋 系统分析与性能评价 47

HTM Design
• Cache lines annotated to track read-set & write set

• R bit: indicates data read by transaction; set on loads

• W bit: indicates data written by transaction; set on stores
• R/W bits can be at word or cache-line granularity

• R/W bits gang-cleared on transaction commit or abort

• For eager versioning, need a 2nd cache write for undo log

• Coherence requests check R/W bits to detect conflicts
• Shared request to W-word is a read-write conflict

• Exclusive request to R-word is a write-read conflict

• Exclusive request to W-word is a write-write conflict

2022年秋 系统分析与性能评价 48

Transactional Memory Summary

• Atomic construct: declaration of atomic behavior
• Motivating idea: increase simplicity of synchronization, without sacrificing

performance

• Transactional memory implementation
• Many variants have been proposes: SW, HW, SW+HW

• Differ in versioning policy (eager vs. lazy)

• Conflict detection policy (pessimistic vs. optimistic)

• Detection granularity

• Hardware transactional memory
• Versioned data kept in caches

• Conflict detection built upon coherence protocol

2022年秋 系统分析与性能评价 49

